arXiv:1610.01508v1 [cs.CL] 5 Oct 2016

VoxML: A Visualization Modeling Language

James Pustejovsky and Nikhil Krishnaswamy
Brandeis University
Waltham, Massachusetts USA
{jamesp,nkrishna} @cs.brandeis.edu

Abstract
We present the specification for a modeling language, VoxML, which encodes semantic knowledge of real-world objects represented
as three-dimensional models, and of events and attributes related to and enacted over these objects.VoxML is intended to overcome the
limitations of existing 3D visual markup languages by allowing for the encoding of a broad range of semantic knowledge that can be
exploited by a variety of systems and platforms, leading to multimodal simulations of real-world scenarios using conceptual objects that

represent their semantic values.

Keywords: Semantics, Cognitive Methods, Simulation, Lexical Semantics, Visualization

1. Introduction

In this paper, we describe a modeling language for con-
structing 3D visualizations of concepts denoted by natu-
ral language expressions. This language, VoxML (Visual
Object Concept Modeling Language), is being used as the
platform for creating multimodal semantic simulations in
the context of human-computer communication.’

Prior work in visualization from natural language has
largely focused on object placement and orientation in
static scenes (Coyne and Sproat, 2001; Siskind, 2001;
Chang et al., 2015), and we have endeavored to incorporate
dynamic semantics and motion language into our model.
In previous work (Pustejovsky and Krishnaswamy, 2014;
Pustejovsky, 2013), we introduced a method for modeling
natural language expressions within a 3D simulation en-
vironment built on top of the game development platform
Unity (Goldstone, 2009). The goal of that work was to eval-
uate, through explicit visualizations of linguistic input, the
semantic presuppositions inherent in the different lexical
choices of an utterance. This work led to two additional
lines of research: an explicit encoding for how an object
is itself situated relative to its environment; and an opera-
tional characterization of how an object changes its location
or how an agent acts on an object over time. The former
has developed into a semantic notion of situational context,
called a habitat (Pustejovsky, 2013; McDonald and Puste-
jovsky, 2014), while the latter is addressed by dynamic in-
terpretations of event structure (Pustejovsky and Moszkow-
icz, 2011; Pustejovsky, 2013).

The requirements on a visual simulation include, but are
not limited to, the following components:

1. A minimal embedding space (MES) for the simula-
tion must be determined. This is the 3D region within
which the state is configured or the event unfolds;

2. Object-based attributes for participants in a situation
or event need to be specified; e.g., orientation, relative
size, default position or pose, etc.;

'This work is being carried out in the context of CwC, a
DARPA effort to identify and construct computational semantic
elements, for the purpose of carrying out joint plans between a
human and computer through NL discourse.

3. An epistemic condition on the object and event ren-
dering, imposing an implicit point of view (POV);

4. Agent-dependent embodiment; this determines the
relative scaling of an agent and its event participants
and their surroundings, as it engages in the environ-
ment.

In order to construct a robust simulation from linguistic in-
put, an event and its participants must be embedded within
an appropriate minimal embedding space. This must suffi-
ciently enclose the event localization, while optionally in-
cluding space enough for a frame of reference for the event
(the viewer’s perspective). We return to this issue later in
the paper when constructing our simulation from the se-
mantic interpretation associated with motion events.
Existing representation languages for 3D modeling, such
as VRML (Parisi and Pesce, 1994), (Carson et al., 1999) or
X3D (Brutzman and Daly, 2010), adequately represent the
vertices, edges, faces, and UV texture mapping that make
up the model itself, but contain no information about how
such an object interacts with other objects in a real or sim-
ulated environment. Such information is represented on an
ad hoc basis for the needs of the particular platform or en-
vironment in which the model will be deployed.

Our goal in developing VoxML is twofold: to specify a lan-
guage for both designing and representing data structures
that generate simulations of linguistically represented ob-
jects, properties, and events. Just as the lexical items in
a language are specified and encoded with a richly typed
framework, such as Generative Lexicon, most lexemes will
have a representation within VoxML that encodes an inter-
pretation of the word’s semantic content as a visualization.
We have followed a strict methodology of specification
development, as adopted by ISO TC37/SC4 and outlined
in (Bunt, 2010) and (Ide and Romary, 2004), and as im-
plemented with the development of ISO-TimeML (Puste-
jovsky et al., 2005; Pustejovsky et al., 2010) and others in
the family of SemAF standards. Further, our work shares
many of the goals pursued in (Dobnik et al., 2013; Dob-
nik and Cooper, 2013), for specifying a rigidly-defined type
system for spatial representations associated with linguistic
expressions.



In this paper, we describe a specification language for mod-
eling “visual object concepts”, VoxML. The object defined
within VoxML will be called a voxeme, and the library of
voxemes, a Voxicon.

2. Habitats and Affordances

Before we introduce the VoxML specification, we review
our assumptions regarding the semantics underlying the
model. Following Generative Lexicon (GL) (Pustejovsky,
1995), lexical entries in the object language are given
a feature structure consisting of a word’s basic type, its
parameter listing, its event typing, and its qualia structure.
The semantics of an object will consist of the following:

(1) a. Atomic Structure (FORMAL): objects expressed
as basic nominal types
b. Subatomic Structure (CONST): mereotopological
structure of objects
c. Event Structure (TELIC and AGENTIVE): origin
and functions associated with an object
d. Macro Object Structure: how objects fit together
in space and through coordinated activities.

Objects can be partially contextualized through their
qualia structure: a food item has a TELIC value of eat, an
instrument for writing, a TELIC of write, a cup, a TELIC of
hold, and so forth. For example, the lexical semantics for
the noun chair carries a TELIC value of sit_in:

chair
AS = | ARGI =x:e}

_ | F = phys(x)
Q= \7_ Az, e[sit_in(e, z, )]

(2) Az3dy

While an artifact is designed for a specific purpose (its
TELIC role), this can only be achieved under specific cir-
cumstances. (Pustejovsky, 2013) introduces the notion of
an object’s habitat, which encodes these circumstances.
Assume that, for an artifact, =, given the appropriate con-
text C, performing the action 7 will result in the intended
or desired resulting state, R, i.e., C — [w]R. That is, if a
context C (a set of contextual factors) is satisfied, then ev-
ery time the activity of 7 is performed, the resulting state
‘R will occur. The precondition context C is necessary to
specify, since this enables the local modality to be satisfied.
Using this notion, we define a habitat as a representation
of an object situated within a partial minimal model; it
is a directed enhancement of the qualia structure. Multi-
dimensional affordances determine how habitats are de-
ployed and how they modify or augment the context,
and compositional operations include procedural (simula-
tion) and operational (selection, specification, refinement)
knowledge.

The habitat for an object is built by first placing it within an
embedding space and then contextualizing it. For example,
in order to use a table, the top has to be oriented upward,
the surface must be accessible, and so on. A chair must
also be oriented up, the seat must be free and accessible,
it must be able to support the user, etc. An illustration of

what the resulting knowledge structure for the habitat of a
chair is shown below.

chair;,qp

F = [phys(x), on(z, 1), in(, y2), orient(z, up)]
C = [seat(z1), back(x2),legs(xs), clear(x1)]
T = AzXe[C — [sit(e, z, )| Rsit ()]

A = [made(e’,w,x

A\x

As described in more detail below, event simulations are
constructed from the composition of object habitats, along
with particular constraints imposed by the dynamic event
structure inherent in the verb itself, when interpreted as a
program.

The final step in contextualizing the semantics of an ob-
ject is to operationalize the TELIC value in its habitat. This
effectively is to identify the affordance structure for the ob-
ject (Gibson, 1977; Gibson, 1979). The affordance struc-
ture available to an agent, when presented with an object,
is the set of actions that can be performed with it. We re-
fer to these as GIBSONIAN affordances, and they include
“grasp”, “move”, “hold”, “turn”, etc. This is to distinguish
them from more goal-directed, intentionally situated activ-
ities, what we call TELIC affordances.

3. The VoxML Specification

3.1. VoxML Elements

Entities modeled in VoxML can be objects, programs, or
logical types. Objects are logical constants; programs are n-
ary predicates that can take objects or other evaluated pred-
icates as arguments; logical types can be divided into at-
tributes, relations, and functions, all predicates which take
objects as arguments. Attributes and relations evaluate to
states, and functions evaluate to geometric regions. These
entities can then compose into visualizations of natural lan-
guage concepts and expressions.

3.2. Objects

The VoxML OBJECT is used for modeling nouns. The
current set of OBJECT attributes is shown below:

LEX OBJECT’s lexical information
TYPE OBJECT’s geometrical typing

HABITAT OBJECT’s habitat for actions
AFFORD_STR OBJECT’s affordance structure
EMBODIMENT | OBJECT’s agent-relative embodiment

The LEX attribute contains the subcomponents PRED, the
predicate lexeme denoting the object, and TYPE, the ob-
ject’s type according to Generative Lexicon.

The TYPE attribute (different from LEX’s TYPE subcom-
ponent) contains information to define the object geometry
in terms of primitives. HEAD is a primitive 3D shape that
roughly describes the object’s form (such as calling an
apple an “ellipsoid”), or the form of the object’s most se-
mantically salient subpart. We ground our possible values
for HEAD in, for completeness, mathematical formalism
defining families of polyhedra (Griinbaum, 2003), and,
for annotator’s ease, common primitives found across



the “corpus” of 3D artwork and 3D modeling software?
(Giambruno, 2002). Using common 3D modeling prim-
itives as convenience definitions provides some built-in
redundancy to VoxML, as is found in NL description of
structural forms. For example, a rectangular_prism
is the same as a parallelepiped that has at least two
defined planes of reflectional symmetry, meaning that an
object whose HEAD is rectangular_prism could be
defined two ways, an association which a reasoner can
unify axiomatically. Possible values for HEAD are given
below:

HEAD | prismatoid, pyramid, wedge,
parallelepiped, cupola,
frustum, cylindroid, ellipsoid,
hemiellipsoid, bipyramid,
rectangular_prism, toroid,
sheet

It should be emphasized that these values are not intended
to reflect the exact structure of a particular geometry, but
rather a cognitive approximation of its shape, as is used in
some image-recognition work (Goebel and Vincze, 2007).
Object subparts are enumerated in COMPONENTS. CON-
CAVITY can be concave, flat, or convex and refers
to any concavity that deforms the HEAD shape. ROTAT-
SYM, or rotational symmetry, defines any of the world’s
three orthogonal axes around which the object’s geometry
may be rotated for an interval of less than 360 degrees and
retain identical form as the unrotated geometry. A sphere
may be rotated at any interval around any of the three axes
and retain the same form. A rectangular prism may be ro-
tated 180 degrees around any of the three axes and retain
the same shape. An object such as a ceiling fan would
only have rotational symmetry around the Y axis. Reflec-
tional symmetry, or REFLECTSYM, is defined similarly. If
an object may be bisected by a plane defined by two of the
world’s three orthogonal axes and then reflected across that
plane to obtain the same geometric form as the original ob-
ject, it is considered to have reflectional symmetry across
that plane. A sphere or rectangular prism has reflectional
symmetry across the XY, XZ, and YZ planes. A wine bot-
tle only has reflectional symmetry across the XY and YZ
planes.

The possible values of ROTATSYM and REFLECTSYM are
intended to be world-relative, not object-relative. That is,
because we are only discussing objects when situated in a
minimal embedding space (even an otherwise empty one)
wherein all coordinates are given Cartesian values, the axis
of rotational symmetry or plane of reflectional symmetry
are those denoted in the world, not of the object. Thus, a
tetrahedron—which in isolation has seven axes of rotational
symmetry, no two of which are orthogonal—when placed
in the MES such that it cognitively satisfies all “real-world”
constraints, must be situated with one base downward (a
tetrahedron placed any other way will fall over). Thus re-
ducing the salient in-world axes of rotational symmetry to
one: the world’s Y-axis. When the orientation of the ob-

*Mathematically curved surfaces such as spheres and cylinders
are in fact represented, computed, and rendered as polyhedra by
most modern 3D software.

ject is ambiguous relative to the world, the world should be
assumed to provide the grounding value.

The HABITAT element defines habitats INTRINSIC to the
object, regardless of what action it participates in, such
as intrinsic orientations or surfaces, as well as EXTRIN-
SIC habitats which must be satisfied for particular actions
to take place. We can define intrinsic faces of an object in
terms of its geometry and axes. The model of a computer
monitor, when axis-aligned according to 3D modeling con-
vention, aligns the screen with the world’s Z-axis facing
the direction of increasing Z values. When discussing the
object “computer monitor,” the lexeme “front” singles out
the screen of the monitor as opposed to any other part. We
can therefore correlate the lexeme with the geometrical rep-
resentation by establishing an intrinsic habitat of the com-
puter monitor of front(+Z). We adopt the terminology of
“alignment” of an object dimension, d € {z,y, z}, with
the dimension, d’, of its embedding space, £y, as follows:
align(d,Eq).

AFFORD_STR describes the set of specific actions, along
with the requisite conditions, that the object may take
part in. There are low-level affordances, called GIBSO-
NIAN, which involve manipulation or maneuver-based ac-
tions (grasping, holding, lifting, touching); there are also
TELIC affordances (Pustejovsky, 1995), which link directly
to what goal-directed activity can be accomplished, by
means of the GIBSONIAN affordances.

EMBODIMENT qualitatively describes the SCALE of the ob-
ject compared to an in-world agent (typically assumed to be
a human) as well as whether the object is typically MOV-
ABLE by that agent.

3.3. Programs

PROGRAM is used for modeling verbs. The current set of
PROGRAM attributes is shown below:

LEX PROGRAM’s lexical information
TYPE PROGRAM’s event typing
EMBEDDING_SPACE | PROGRAM’s embedding space as a
function of the participants and
their changes over time

Just like OBJECTS, a PROGRAM’s LEX attribute contains
the subcomponents PRED, the predicate lexeme denoting
the program, and TYPE, the program’s type as given in a
lexical semantic resource, e.g., its GL type.

TYPE contains the HEAD, its base form; ARGS, reference to
the participants; and BODY, any subevents that are executed
in the course of the program’s operation. Top-level values
for a PROGRAM’s HEAD are given below:

HEAD | state, process, transition

assignment, test

The type of a program as shown above is given in terms
of how the visualization of the action is realized. Basic
program distinctions, such as test versus assignment
are included within this typology and further distinguished
through subtyping.



3.4. Logical Types

Like OBJECTs and PROGRAMS, all functional type classes
contain a LEX attribute and a PRED parameter that denote
the lexeme related to the VoxML representation. The dis-
tinction between ATTRIBUTES, RELATIONs, and FUNC-
TIONS lies mainly in differences in their TYPE structure,
discussed in each subsection below.

34.1. Attributes

Adjectival modification and predication involve reference
to an ATTRIBUTE in our model, along with a specific value
for that attribute. Often, but not always, this attribute is as-
sociated with a family of other attributes, structured accord-
ing to some set of constraints, which we call a SCALE. The
least constrained association is a conventional sortal classi-
fication, and its associated attribute family is the set of pair-
wise disjoint and non-overlapping sortal descriptions (non-
super types). Following (Stevens, 1946; Luce et al., 1990),
we will call this classification a nominal scale, and it is
the least restrictive scale domain over which we can predi-
cate an individual. binary classifications are a two-state
subset of this domain. When we impose more constraints
on the values of an attribute, we arrive at more structured
domains. For example, by introducing a partial ordering
over values, we can have transitive closure, assuming all
orderings are defined. This is called an ordinal scale.
When fixed units of distance are imposed between the el-
ements on the ordering, we arrive at an interval scale.
Finally, when a zero value is introduced, we have a scalar
structure called a ratio scale.

In reality, of course, there are many more attribute cate-
gories than the four listed above, but the goal in VoxML is
to use these types as the basis for an underlying cognitive
classification for creating measurements from different
attribute types. In other words, these scale types are models
of cognitive strategies for structuring values for conceptual
attributes associated with natural language expressions
involving scalar values. VoxML encodes how attributes
and the associated programs that change their values can
be grouped into these scalar domains of measurement. As
VoxML is intended to model visualizations of physical
objects and programs, we should note here that we are only
examining first-order attributes, and not those that require
any subjective interpretation relative to their arguments
(that is, VoxML is intended to model “the image is red”
but not “the image is depressing”). Examples of different
SCALE types follow:

ordinal DIMENSION big, little, large, small,
long, short

binary HARDNESS hard, soft

nominal COLOR red, green, blue

rational | MASS 1kg, 2kg, etc.

interval | TEMPERATURE | 0°C, 100°C, etc.

VoxML also denotes an attribute’s ARITY, or the relative of
the attribute to the object it describes compared to other in-
stances of the same object class. transitive attributes
are considered to describe object qualities that require com-
parison to other object instances (e.g. the small cup vs.

the big cup), whereas intransitive attributes do not
require that comparison (a red cup is not red compared
to other cups; it is objectively red—or its redness can be
assessed quantitatively). Finally, every attribute must be
realized as applying to an object, so attributes require an
ARG, a variable representing said object and the typing
thereof. This is denoted identically to the individual ARGS
of VoxML PROGRAMs.

3.4.2. Relations

A RELATION’s type structure specifies a binary CLASS of
the relation: configuration or force_dynamic, de-
scribing the nature of the relation. These classes them-
selves have subvalues—for configurational relations these
are values from the region connection calculus (Randell et
al., 1992). Also specified are the arguments participating
in the relations. These, as above, are represented as typed
variables.

3.4.3. Functions

FUNCTIONS’ typing structures take as ARG the OBJECT
voxeme being computed over. REFERENT takes any sub-
parameters of the ARG that are semantically salient to the
function, such as the voxeme’s HEAD. If unspecified, the
entire voxeme should be assumed as the referent. MAP-
PING is set to a denotation of the type of transformation
the function performs over the object, such as dimension-
ality reduction (notated as dimension(n):n-1 for a function
that takes in an object of n dimensions and returns a region
of n-1). Finally, ORIENTATION provides three values:
SPACE, which notes if the function is performed in world
space or object space; AXIS, which notes the primary
axis and direction the function exploits; and ARITY, which
returns fransitive or intransitive based on the boolean value
of a specified input variable (x [y] : intransitive de-
notes a function that returns intransitive if the value of y in
x is true). Defintions of transitive and intransitive follow
those for ATTRIBUTES.

4. Examples of Voxemes

In this section, we illustrate the representational capabili-
ties of the specification by briefly presenting example vox-
eme entries from the current VoxML voxicon. VoxML OB-
JECT representations are intended to correspond with spe-
cific voxeme geometries, which are given below the markup
example. In cases where a representation instance is given
independently of a geometry, it should be assumed to de-
note a prototypical or “default” representation of the vox-
eme’s associated lexeme. We explore the richness of the
language in more detail in the long version of the paper.

4.1. Objects

In this section, we illustrate the visual object concept mod-
eling capabilities for objects by differentiating between
properties of the object’s type, habitat, afforfance structure,
and how it is embodied. Consider the voxeme structures for
wall and table.



[ wall
PRED = wall
LEX = [TYPE = physobj]

HEAD = rectangular_prism
COMPONENTS = nil

TYPE = | CONCAVITY = flat
ROTATSYM = {X,Y, Z}
REFLECTSYM = {XY, XZ, Y Z}
3) . UP = align(Y,&y)
_ | INTR = | FRONT = front(+Z
HABITAT CONSTR = Z K Y, Z < X
EXTR = ...
Ay - H — [El]R
AFFORD_STR = | Ag — ...
Az =.

MOVABLE = false

EMBODIMENT — [SCALE = >agent ]

Figure 1: Wall voxeme instance

While walls and tables are both geometries that have
habitats which are upwardly aligned, tables have a
head geometry of sheet, which is a special case of
rectangular_prism where the Y dimension is signifi-
cantly less than X or Z. This head is identified in the habitat
as the top of the object, facing up.

[ table
PRED = table
LEX = [TYPE = physobj]

HEAD = sheet [1]
COMPONENTS = surface [1], leg+

TYPE = | CONCAVITY = flat
ROTATSYM = {Y
@ REFLECTSYM = {XY,Y Z}
INTR - | UP = align(Y, Ey)
HABITAT = TOP = top(+Y)
EXTR = ...
A = H — [El]R
AFFORD_STR = | Aj — ...
Az =.

MOVABLE = true

EMBODIMENT — [SCALE - agent }

Now consider the voxeme for plate. This illustrates how the
habitat feeds into activating the affordance structure associ-
ated with the object. Namely, if the appropriate conditions
are satisfied ([1]), then the telic affordance associated with
a plate is activated; every putting of x on y results in y hold-
ing x.

Figure 2: Table voxeme instance

[ plate
_ | PRED = plate
LEX = [TYPE = physobj]
HEAD = sheet
COMPONENTS = surface, base
TYPE = | CONCAVITY = concave
ROTATSYM = {Y
s REFLECTSYM = {XY,Y Z}
) INTR — (| UP = align(Y, &)
HABITAT = TOP = top(+Y)
EXTR = ...
A1 = H[1] — [put(x,y)|hold(y,
AFFORD.STR - | 4 = _.[ ] = [put(z, y)|hold(y, x)
Az = ..
_ | SCALE = < agent
EMBODIMENT = [MOVABLE = true ]
Figure 3: Plate voxeme instance
[ apple
_ | PRED = apple
LEX = [TYPE = physobj]
HEAD = ellipsoid [1]
COMPONENTS = fruit [1], stem, leaf
TYPE — | CONCAVITY = convex
ROTATSYM = {Y
(6) REFLECTSYM = {XY,YZ}
| INTR = (3
HABITAT = [EXTR _ ]
A1 = H — [E1]R
AFFORD_STR = | Ay — ...
Az = ...
_ | SCALE = < agent
| EMBODIMENT — [MOVABLE = true ]

4.2. Programs

Events are interpreted as programs, moving an object or
changing an object property or relation from state to state,
as described in more detail in the next section. Program
structure derives largely from the lexical semantics of the
verb in GL. However, the semantics of the predicative




Figure 4: Apple voxeme instance

change over the event structure is interpreted operationally.
We illustrate this with two predicates as programs, slide and

put.

[ slide
_ | PRED = slide
LEX = [TYPE = pI’OCQSS]

HEAD = process

(7) ARGS — [Al = X:physobj]
TYPE = Az = y:physobj
Bopy — | E1 = while(EC(z,y),
move(z))
[ put
_ | PRED = put
LEX = [TYPE = transition,event]

[ HEAD = transition

A1 = X:agent
ARGS = | A2 = y:physobj
®) | Az = z:location

E1 = grasp(z,y)

E2 = [while(
hold(z, ),
move(x

Es = [at(y,z) —
ungrasp(z,y)]

TYPE =

BODY =

4.3. Attributes

Unlike physical objects, which can be associated with spe-
cific geometries, attributes are abstract predications over
distinct domains, and can only be simulated by application
to an element of this domain. Below is an example of the
nominal attributive interpretation of the adjective brown,
and the ordinal attributive interpretation of small.

[ brown
LEX = [ PRED = brown |
9) SCALE = nominal
TYPE = | ARITY = intransitive
ARG = x:physobj
[ small
LEX = [ PRED - small |
(10) SCALE = ordinal
TYPE = | ARITY = transitive
ARG = x:physobj

4.4. Relations

Spatial relations are propositional expressions, contributing
configurational information about two or more objects in a
state.

[ touching
LEX = [ PRED - is_touching |

CLASS = config

(11) VALUE = EC
TYPE = A1 = x:3D
ARGS = | Ay = y:3D
A3 =

4.5. Functions

Finally, we illustrate the semantics of spatial functions with
top. This applies to an object of dimensionality n, returning
an object of dimensionality n — 1; the top of a cube is a
plane; that of a rectangular sheet is a line; and the top of a
line is a point.

[ top
LEX = | PRED = top
ARG = x:physobj
REFERENT = x—HEAD
(12) MAPPING = dimension(n):n-1
SPACE = world
TYPE = AXIS = +Y
ORIENTATION = | ARITY = Xx—HABITAT—
INTR[top(axis)]:
intransitive

S. Using VoxML for Simulation Modeling of
Language

VoxML treats objects and events in terms of a dynamic
event semantics, Dynamic Interval Temporal Logic (DITL)
(Pustejovsky and Moszkowicz, 2011). The advantage of
adopting a dynamic interpretation of events is that we can
map linguistic expressions directly into simulations through
an operational semantics (Miller and Charles, 1991; Miller
and Johnson-Laird, 1976). Models of processes using up-
dating typically make reference to the notion of a state tran-
sition (van Benthem, 1991; Harel, 1984). This is done by
distinguishing between formulae, ¢, and programs, m. A
formula is interpreted as a classical propositional expres-
sion, with assignment of a truth value in a specific model.
For the present discussion, we represent the dynamics of
actions in terms of Labeled Transition Systems (LTSs) (van
Benthem, 1991).> An LTS consists of a triple, (S, Act, —),
where: S is the set of states; Act is a set of actions; and
— is a total transition relation: —C S x Act x S. An ac-
tion, a € Act, provides the labeling on an arrow, making
it explicit what brings about a state-to-state transition. As a
shorthand for (e, a, e5) €—, we will also use e; — es.

Simulation generation begins by parsing a natural English
sentence, currently using the ClearNLP parser (Choi and
McCallum, 2013).* The dependency parse is then trans-
formed into a predicate-argument set representation using
the root of the parse as the main predicate and its de-
pendencies as arguments. Each predicate can have more
than one argument and arguments may themselves be pred-
icates (thus higher-order predicates are permissible). This

3This is consistent with the approach developed in (Fernando,
2009; Fernando, 2013). This approach to a dynamic interpreta-
tion of change in language semantics is also inspired by Steedman
(2002).

*We are working toward integrating the lexical entries with
a rule-based parser that provides for a compositionally derived
interpretation of the sentence being parsed.




predicate-argument set formula is then evaluated from the
innermost first order predicates outward until a single first-
order representation is reached.

dob‘irep pobj
o Yoo/ fon N

Putthe apple on the  plate.

Figure 5: Dependency parse

1. pred := put(x,y)
2. x :=apple
3.y:=on(z)

4. 7 :=plate
put(apple,on(plate))

Figure 6: Transformation to logical form

put(apple, <1, 2.3, -0.8>)
Figure 7: “on(plate)” evaluates to coordinates

The evaluation of predicates entails the composition of the
voxemes involved. Since we allow for program voxemes
(verbs), logical type voxemes (relations, attributes, func-
tions) and object voxemes (nominals), evaluation involves
executing a snippet of code that operationalizes a program
voxeme using the geometric and VoxML-encoded seman-
tic information from the voxeme(s) indicated by the input
predicate’s argument(s).

In the example given above, the predicate on(plate) is eval-
uated to a specific location that satisfies the constraint de-
noted by “on the plate”, using information about the plate
object, specifically its dimensions and concavity. The pro-
gram put can then be realized as a DITL program that
moves the object apple toward that location until the apple’s
location and the location evaluated for on(plate) are equal,

and executed as a simple state transition = .
€1 (D)

Given a 3D scene that contains voxemes for all nominals
referred to in the text, the program can be operationalized
in code and the state transition can be executed over the
geometries visualized in 3D space. We use an updated ver-
sion of the the simulator built for (Pustejovsky and Krish-
naswamy, 2014) and the C# language to generate visualiza-
tions like that shown in Figure 9 below.

6. Conclusion

In this paper we have outlined a specification to represent
semantic knowledge of real-world objects represented as
three-dimensional models. We use a combination of pa-
rameters that can be determined from the object’s geomet-
rical properties as well as lexical information from natural
language, with methods of correlating the two where ap-
plicable. This information allows for the visualization and
simulation software to fill in information missing from the
natural language input and allows the software to render a

put(obj,y)
loc(obj) := x, target(obj) := y; b := x;
(x := w; x # w; d(b,x) < d(bw), d(b,y) > d(y,w)*

Figure 8: DITL expressions for put(obj,y).

Figure 9: Program is executed in automatically generated
rendering

functional visualization of programs being run over objects
in a robust and extensible way. Currently we have a voxi-
con containing 500 object (noun) voxemes and 10 program
(verb) voxemes.

As our library of available voxemes continues to grow the
specification elements may as well, allowing us to opera-
tionalize a larger library of various and more complicated
programs, and to compose complex behaviors out of sim-
pler ones. The voxeme library and visualization software
will be deployed at http://www.voxicon.net. There users
may find the current library of voxemes and conduct vi-
sualizations of available behaviors driven by VoxML after
parsing and interpretation.

7. Acknowledgements

This work was supported by Contract W911NF-15-C-0238
with the US Defense Advanced Research Projects Agency
(DARPA) and the Army Research Office (ARO). Approved
for Public Release, Distribution Unlimited. The views ex-
pressed are those of the authors and do not reflect the offi-
cial policy or position of the Department of Defense or the
U.S. Government. All errors and mistakes are, of course,
the responsibilities of the authors.



8. Bibliographical References

Brutzman, D. and Daly, L. (2010). X3D: extensible 3D
graphics for Web authors. Morgan Kaufmann.

Bunt, H. (2010). A methodology for designing semantic
annotation languages exploiting syntactic-semantic iso-
morphisms. In Proceedings of ICGL 2010, Second Inter-
national Conference on Global Interoperability for Lan-
guage Resources.

Carson, G. S., Puk, R. F,, and Carey, R. (1999). Develop-
ing the vrml 97 international standard. Computer Graph-
ics and Applications, IEEE, 19(2):52-58.

Chang, A., Monroe, W., Savva, M., Potts, C., and Manning,
C.D. (2015). Text to 3d scene generation with rich lexi-
cal grounding. arXiv preprint arXiv:1505.06289.

Choi, J. D. and McCallum, A. (2013). Transition-based
dependency parsing with selectional branching. In ACL
(1), pages 1052—-1062.

Coyne, B. and Sproat, R. (2001). Wordseye: an automatic
text-to-scene conversion system. In Proceedings of the
28th annual conference on Computer graphics and in-
teractive techniques, pages 487-496. ACM.

Dobnik, S. and Cooper, R. (2013). Spatial descriptions in
type theory with records. In Proceedings of IWCS 2013
Workshop on Computational Models of Spatial Lan-
guage Interpretation and Generation (CoSLI-3). Cite-
seer.

Dobnik, S., Cooper, R., and Larsson, S. (2013). Mod-
elling language, action, and perception in type theory
with records. In Constraint Solving and Language Pro-
cessing, pages 70-91. Springer.

Fernando, T. (2009). Situations in Itl as strings. Informa-
tion and Computation, 207(10):980-999.

Fernando, T. (2013). Segmenting temporal intervals for
tense and aspect. In The 13th Meeting on the Mathemat-
ics of Language, page 30.

Giambruno, M. (2002). 3D graphics and animation. New
Riders Publishing.

Gibson, J. J. (1977). The theory of affordances. Perceiv-
ing, acting, and knowing: Toward an ecological psychol-
0gy, pages 67-82.

Gibson, J. J. (1979). The ecological approach to visual
perception: classic edition. Psychology Press.

Goebel, P. M. and Vincze, M. (2007). A cognitive model-
ing approach for the semantic aggregation of object pro-
totypes from geometric primitives: toward understand-
ing implicit object topology. In Advanced Concepts for
Intelligent Vision Systems, pages 84-96. Springer.

Goldstone, W. (2009). Unity Game Development Essen-
tials. Packt Publishing Ltd.

Griinbaum, B. (2003). Are your polyhedra the same as my
polyhedra? In Discrete and Computational Geometry,
pages 461-488. Springer.

Harel, D. (1984). Dynamic logic. In M. Gabbay et al., ed-
itors, Handbook of Philosophical Logic, Volume II: Ex-
tensions of Classical Logic, page 4977604. Reidel.

Ide, N. and Romary, L. (2004). International standard for a
linguistic annotation framework. Natural Language En-
gineering, 10(3-4):211-225.

Luce, D., Krantz, D., Suppes, P., and Tversky, A. (1990).
Foundations of measurement, vol. iii: Representation,
axiomatization, and invariance.

McDonald, D. and Pustejovsky, J. (2014). On the represen-
tation of inferences and their lexicalization. In Advances
in Cognitive Systems, volume 3.

Miller, G. and Charles, W. (1991). Contextual correlates of
semantic similarity. Language and Cognitive Processes,
6(1):1-28.

Miller, G. A. and Johnson-Laird, P. N. (1976). Language
and perception. Belknap Press.

Parisi, A. and Pesce, M. (1994). Virtual reality markup
language (vrml). URL: http://www. wired. com/vrml.
Pustejovsky, J. and Krishnaswamy, N. (2014). Generating
simulations of motion events from verbal descriptions.
Lexical and Computational Semantics (* SEM 2014),

page 99.

Pustejovsky, J. and Moszkowicz, J. (2011). The qualita-
tive spatial dynamics of motion. The Journal of Spatial
Cognition and Computation.

Pustejovsky, J., Knippen, R., Littman, J., and Sauri,
R. (2005). Temporal and event information in natu-
ral language text. Language Resources and Evaluation,
39:123-164, May.

Pustejovsky, J., Lee, K., Bunt, H., and Romary, L. (2010).
Iso-timeml: A standard for annotating temporal informa-
tion in language. In Proceedings of LREC, pages 394—
397.

Pustejovsky, J. (1995). The Generative Lexicon. Bradford
Book. Mit Press.

Pustejovsky, J. (2013). Dynamic event structure and
habitat theory. In Proceedings of the 6th International
Conference on Generative Approaches to the Lexicon
(GL2013), pages 1-10. ACL.

Randell, D., Cui, Z., and Cohn, A. (1992). A spatial logic
based on regions and connections. In Morgan Kauf-
mann, editor, Proceedings of the 3rd Internation Con-
ference on Knowledge Representation and REasoning,
pages 165-176, San Mateo.

Siskind, J. M. (2001). Grounding the lexical semantics
of verbs in visual perception using force dynamics and
event logic. J. Artif. Intell. Res.(JAIR), 15:31-90.

Steedman, M. (2002). Plans, affordances, and combina-
tory grammar. Linguistics and Philosophy, 25(5-6):723—
753.

Stevens, S. S. (1946). On the theory of scales of measure-
ment.

van Benthem, J. F. A. K. (1991). Logic and the flow of
information.



