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Abstract. As human-computer interfaces become more sophisticated,
people expect computational agents to behave more like humans. How-
ever, humans interacting make assumptions about mutual conceptual
understanding that they may not make when interacting with a com-
putational agent, where spatial cues in the environment affect their as-
sumptions about the agent’s knowledge. In this paper, we examine an
interaction between human subjects and a virtual embodied avatar dis-
played on a screen, wherein a surface displayed on the screen is either
“continued” in the real world by a physical surface or not. Subjects
are, with minimal instruction, asked to indicate objects displayed in the
shared environment to the agent in the course of a collaborative task.
We then examine the subjects’ adaptations, in aggregate, to the different
configurations.

Keywords: spatial cognition, deixis, virtual agent, embodiment, spatial
reasoning

1 Introduction

In person-to-person interactions, assumptions about the interlocutor and the
world influence everything from communication style or “message design” [13]
to available concept vocabulary and modalities [4]. If two people jointly expe-
rience a localized event, they can be said to be co-situated and co-perceptive.
Additionally, if engaged in a collaborative task, they co-intend to complete the
task and must co-attend to the situation. Coordination between multiple agents
becomes particularly advantageous when each agent may have incomplete knowl-
edge of the situation, but can rely on their interlocutor(s) to clarify or provide
instructions, which is facilitated by imagining the situation from a different per-
spective [8], or at a deeper level by neural structures like mirror neurons [3].
These parameters come together in a theory of common ground [11, 41, 5, 36].
A rich, diverse literature exists on assumptions and presuppositions underlying
human communication (e.g., [10, 41, 42]), and we have previously examined these
factors from a computational perspective continued in this line of research [38].

Some problems in a strictly presuppositional view of common ground have
been raised by Abbott [2], which can be mitigated by the introduction of such
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mechanisms as “accommodation” of non-controversial information (a la Lewis
[28]), or reminding the interlocutor of known but non-forefronted information.

At least some of the assumptions underlying common ground are not in force
when a human interacts with a non-human. Just as the common ground between
a human and an animal is limited [23], so too is it between a human and a
robot or virtual agent, as no mechanism for accommodation or reminding exists
in a computer system unless put there by the developers. However, unlike an
animal, a robot or embodied agent is often created with the intent to approximate
human behavior, and as they become more sophisticated, humans come to see
them as human-analogue and expect them to behave as such [12, 16]. How, then,
do these conflicting cues—a perhaps subconscious expectation of an embodied
agent’s human or near-human capability, plus the agent’s lack of some of the
more sophisticated mechanisms to communicate its own situational perception—
manifest in an interaction where some understanding of common ground is both
present and required to complete a shared task?

This paper examines one such angle, using a platform which integrates a
multimodal model of semantics (Multimodal Semantic Simulations, MSS) [37,
25] with a realtime vision system for recognizing human gestures [45]. The result
[24, 33] creates an environment where a human interacts with a virtual agent
to communicate spatially-grounded instructions in a collaborative task, and we
examine how human users adapt their deictic techniques based on variant spatial
cues in the experimental setup, as a proxy for the underlying assumptions they
make about their virtual interlocutor, her embodiment, and understanding.

1.1 Deixis in virtual environments

Humans do intuitively understand virtual worlds to be different from the real
one, particularly if said virtual world appears on a screen while the spatial cues
of the real world remain visible [40]. This presents an interesting problem for the
transfer of spatial cognitive tasks between the virtual space and real space. Many
virtual interaction systems integrate the virtual space with the real space in order
to make the transition as natural as possible. This inclination of course presages
virtual reality (VR) and augmented reality (AR) systems, and thus we end up
with tables and walls that act as tablet surfaces [22, 39] or for content-sharing
[21], and computer vision-tracked interaction with surfaces using gestures [29].

One of the most basic spatially-grounded gestures is deixis. Many (e.g.,
Hostetter [20]) argue that gestures are simulated action, but Clark [11], Volterra
[43] and others view gesture as a more general mode of reference. While our mul-
timodal semantic modeling language, VoxML, treats gestures as a special case
of action programs for generating MSS, gestures may also simulate objects by
decoupling object attributes (e.g., size, shape, relative location) from the object
itself, and binding them to some denotational aspect of the gesture. In the case
of deixis by pointing, this aspect is the location of the object as interpreted by
the pointing agent. The pointing gesture binds a location—in most cases, the
location denoted by the vector of the pointer (e.g., the finger) intersecting some
salient area (e.g., a real or imagined surface plane). The pointing gesture might
then refer to a location, or to objects occupying it (cf. [6]).
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Using an utterance S and a corresponding gesture G there are three ways for
an agent a to perform a communicative act C [36]:

a. Ca = (G) b. Ca = (S) c. Ca = (S,G)

If gesture and speech are temporally aligned, the agent may point to an object
and say “that one” or to a location and say “there,” and the utterance may
select for an object versus a location, while the gesture can be formally realized
as a snippet of a context-free grammar, e.g., PointG → Loc | Obj.

Deixis serves as a method of directing attention. Being temporally aligned
with speech, the object indicated by deixis is usually also the current topic
of discussion or conversation [9]. This expectation is also in effect in a virtual
world, or co-situated worlds mediated by virtualization technology, such as video
conferencing. Therefore a disconnect between agents due to a misalignment in
their respective frames of reference, or information available to one agent that
is invisible to the other, makes it difficult to agree on or to communicate which
object or coordinate is being indicated by deixis [18]. Research in both kinematics
[34] and human-computer interaction tasks [49] points to speed of pointing as
an inverse correlate of the difficulty of the pointing task being performed.

Pointing is one of the most basic communicative gestures, as demonstrated
by various studies [31, 46, 32]. The gesture set used in this line of research comes
from studies by Wang et. al [44], wherein one human, the builder, has a table
with blocks on it, and another human, the signaler, is given a pattern of blocks
to build, invisible to the builder. As only the builder can move the blocks, the
signaler must instruct the builder on how to construct the target pattern. Further
details about these elicitation studies in particular are given in [44].

Because in the elicitation studies, the subjects were standing before tables,
the gestures elicited naturally used the table as a reference point. A subject
might first indicate a spot on the table and then another to indicate a relative
location. Because the subjects were physically separated from each other, the
signalers naturally fell into a pattern of using points on their own table surface
to indicate blocks or positions on the builder’s table surface. This turns the
PointG → Loc | Obj interpretation into a mirroring exercise where PointG →
Loc′ | Obj′, and the location indicated on the signaler’s table space is translated
into the builder’s table space. In less-constrained situations, without the presence
of a common reference point such as a table, many studies have shown that
subjects naturally default to pointing relative to another context. This might
be a free-floating point situated within an immersive virtual reality environment
[47], or, when relevant information is displayed on a screen, the screen [19, 30].

This setup, where the system requirements for accurate/fluent deixis conflict
with users’ documented tendencies when interacting with technology, creates an
opportunity to study if and how users adapt their use of deixis to the system.
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2 Experimental Design

2.1 Scenario and Data Capture

In our experimental scenario, users collaborated with an avatar to build a test
pattern. All users were asked to build a six-block, three-stepped staircase using
the blocks available. The definition of “success” was left up to the user, as far as
placement of specifically colored blocks, orientation of the staircase, exactness of
the blocks’ alignment, etc. Users were told to use gesture and speech to achieve
the goal but were not given the vocabulary of gestures and words understood by
the avatar.

The purpose of the previously-mentioned elicitation studies was to observe
and catalog the use of naturalistic gestures in the given task. Thus the gesture
set in use is adapted to the environment in which the task is conducted, and it
is these uses that were used to develop the avatar-interaction system (hereafter
referred to as HAB, or “human-avatar-blocks world”). The data evaluated here-
after was gathered as part of a larger study evaluating the coverage of the HAB
system [27]. Focusing specifically on the pointing data here allows us to use the
results of this larger evaluation study to examine the particularities of deixis in
a virtual environment with a virtual interlocutor.

Our experiment recreates the experimental setup from the aforementioned
elicitation studies, except the builder is not a human in a physical room but an
embodied avatar in a 3D world rendered on a monitor. This creates a parallel to
the original elicitation study, where the human and the avatar are “separated”
by the computer screen, and only the avatar can access the blocks.

Fig. 1. Scene with embodied avatar.

This virtual world is created using VoxSim [25, 26], a semantically-informed
3D event simulator used for experiments in communicating with computational
agents. VoxSim is built on the Unity game engine and contains a sophisticated
model of object and event semantics based on VoxML and dynamic logic which
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allows the agent to access existing context to interpret input from a human user
in multiple modalities. Here we focus on natural language and gesture.

Gestures are recognized in real time using depth data from a Microsoft
Kinect R© [50] which is classified using ResNet-style deep convolutional neural
networks (DCNNs) [17] implemented in TensorFlow [1]. The system recognizes
35 independent gestures that represent attributes or programs with semantics
encoded in VoxML [37]. The HAB avatar’s contextual interpretations of each ges-
ture type are enumerated in [24] and [33]. Here we focus primarily on pointing,
with supplemental gestures to communicate affirmation or negation. Figure 2
shows the VoxML semantics for a pointing gesture.



point

lex =

 pred = point
type = assignment



type =



head = assignment

args =


a1 = x:agent
a2 = y:finger
a3 = z:location
a4 = w:physobj•location


body =

 e1 = extend(x, y)
e2 = def(vec(x→ y × z), as(w))







Fig. 2. VoxML semantics for a [[point]] gesture. a4, w, shows the compound typing
(a la Generative Lexicon [35]) of the indicated region and objects within that region.

Fig. 3. The variance when a user points at a set of sampled points, using blue for left
hand, red for right hand, and circle size proportionate to variance. The top edge of
the figure represents space closer to the Kinect R© while bottom edge represents space
closer to the user.

The HAB system uses a Kinect R© positioned above and slightly behind the
monitor displaying the avatar and the virtual world. Coordinates indicated on
the user’s table space are calculated relative to the Kinect R© and then trans-
posed into the virtual world. Therefore, if the user points at the coordinate
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represented in Figure 3 as (0.0, 1.6), which approximately represents the point
directly beneath the Kinect R© on the table, this appears in the virtual world as
the coordinate at the center of the table’s “far” edge relative to the user (i.e.,
the edge closest to the avatar). The point represented in the figure as (0.6, 0.0)
would appear in the virtual world as the point at the right-hand corner of the
table closer to the human (rendered at the bottom of the screen). Coordinates
were calculated by intersecting the vector extending through the forearm and ex-
tended finger with an infinite plane situated at the height of the physical table’s
surface. These coordinates were transposed into equivalent coordinates in the
virtual world and visualized as a rotating purple target (as shown in Figure 1).
As the user moved their arm, this target also moved in real time, which allowed
the user to situate the coordinate at which they were pointing in the virtual
world. When the user was pointing at a coordinate interpreted as being on the
surface of the virtual table, the target was displayed at full opacity, while if it
wandered off the table’s surface, the target decreased in opacity proportional to
the distance of the interpreted coordinate to the table’s surface. This cue allowed
the user to see the target while they attempted to move it back onto the table.

We logged all interactions in the following format: INDEX, SYMBOL, CONTENT,

TIMESTAMP. SYMBOL is a two letter code consisting of H (human) or A (avatar)
followed by S (speech/utterance), G (non-pointing gesture), P (pointing) or A

(action). CONTENT is the shallow semantic content of the move, including coordi-
nates where applicable. TIMESTAMP is the time in seconds after the beginning of
the interaction. Further details of logging and evaluation scheme may be found in
[27]. For this study we focus only the circumstances surrounding human pointing
gestures (prefixed HP). Table 1 shows an example snippet of a log file captured
during the user studies.

1 HG engage start 1.145281

2 AS "Hello." 1.145281

3 HP r,-0.25,-0.87 4.889832

4 HP r,-0.16,-1.21 4.928307

5 HP r,-0.07,-1.18 4.960413

6 HP r,-0.03,-1.06 5.040221

7 HP r,-0.09,-0.95 5.072867

8 HP r,-0.07,-0.27 5.15642

...

73 HP r,-0.08,11.69 8.552608

74 HG right point high,-0.02,5.45 8.588802

75 AS "Are you pointing here?" 8.588802

Table 1: Sample trial log (abbreviated)

2.2 Experimentation and Evaluation

We ran user trials on 20 subjects taken from the university graduate student
population. All subjects were computer-literate but had no knowledge of the
particulars of interaction and had no prior experience using this integrated ges-
ture system. Subjects were divided evenly in one of two environments, shown
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in Figure 4. Kinects were placed at the same height in both setups and cen-
tered above and slightly behind the widescreen monitor. The test pattern was
displayed on an iPad to the left of the screen for the subject’s reference. In the
setup with the table (Environment A), users stepped up to the table’s edge to
begin the interaction. In the setup without the table (Environment B), they
stepped up to the blue tape line on the floor.

Fig. 4. Variant conditions with table, and monitor placed at the rear of the table
(left) and without table, with monitor placed at the front edge of the supporting desk
(right). The lines on the floor in the right-hand image demarcate the bounds (projected
downward) of the imaginary table used for calculating pointing coordinates.

The 10 subjects in each environment were also divided into two conditions:
half those in Environment A were explicitly told to consider the real table as an
extension of the virtual table into the real world, as if the avatar were another
person standing behind a glass screen or window, and half those in Environment
B were explicitly told to imagine that the virtual table extended out of the screen
into the real world, as if the avatar were another person standing behind a glass
screen or window. This drew attention to the table or imagined table space and
served as an implicit “hint” that it had some role to play in the interaction.
The remaining subjects in each environment were not given any extra cues on
considering the virtual table. This allowed us two small samples to examine how
this extra information affected the users’ pointing strategies, and we end up with
4 distinct experimental conditions (Table 2).

Interactions were logged from start to finish, defined as the point at which
the user decided that the test pattern was built to their satisfaction, and stepped
away from the table’s edge/demarcated line.
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Condition Physical Table Supplemental Information

1 present (A) none

2 absent (B) none

3 present (A) Physical table extends virtual table

4 absent (B) Virtual table extends into real world
Table 2. 5 subjects were placed in each experimental condition.

In evaluating the data, we were interested in the time it takes a user in a
given condition to settle on a particular position on the table after beginning
their pointing gesture. As discussed in Section 1.1, deixis may either refer to a
location or be coerced to a reference to objects that occupy that location. So,
once the system has recognized that the subject has stopped moving their finger
and is pointing at a specific location, the system then asks for a confirmation of
the location. This question can take many forms based on context, e.g., “Are you
pointing here/at this?” (if the user is just starting the interaction), “The <color>
block?” (if deixis lands in an area containing one or more blocks), “Should I place
something here?” (if deixis lands in a region empty of blocks but a block has
been previously indicated), among others. No matter what the question or the
context that prompted it, the user must answer it with a positive acknowledgment
(the word “yes” or a thumbs-up gesture) or a negative acknowledgment (the
word “no” or a thumbs-down). We define a successful pointing as a pointing
followed by a positive acknowledgment (that is, the user pointed to a spot that
the system recognized and the user confirmed), and a failed pointing as a pointing
followed by a negative acknowledgment (the user pointed to a spot, the system
recognized a different spot, and the user denied that this was correct). The time
taken to successfully point is extracted from the log file as the time from the
commencement of pointing (e.g., move 3 in Table 1) to the recognition of the
location (move 74 in Table 1), but only in those blocks where the pointing event
is succeeded by a positive acknowledgment. If a user adapts their deictic strategy
to the system, intuitively these times to complete a successful pointing should
decrease as the user proceeds further into the interaction. We can model the
adaptation in pointing times as a learning rate and examine in which conditions
users adapt a strategy more quickly.

3 Results and Discussion

We aggregated the data from all sessions of all users in a single condition, and
removed outliers, defined as those times lying outside the interquartile range
(IQR), for the distribution of all times logged, independent of experimental con-
dition. Since each session may span a different length of time from start to
finish, we cannot use the raw duration of an interaction as the independent
variable when plotting results, so we normalized by plotting a user’s pointing
times against the percentage of the total interaction completed to that point. We
plotted the postprocessed data in two ways:
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(1) The raw times taken to complete successful pointing events against the per-
centage of interaction completed. This allows us to assess a learning curve
(see below) for an average user in a given condition and see if the raw time
to successfully complete a pointing declines over the course of an interaction,
stays flat, or increases.

– According to Wright’s cumulative average model [48], a learning curve
is modeled as a power law: yn = axb. yn is the average time to “produce
the first n units” (in this context, the average time to successfully point
to a location on the table the first n times for each trial subject in a
given condition). Therefore a is the time to successfully point the first
time, and b is the natural slope of the learning curve (over raw times we
will denote this bρ), which reflects whether learning proceeds rapidly or
slowly. A percentage, s = 2b, can be used to express how much the time
to point in that environment can be expected to increase or decrease each
time the number of pointing events doubles. s < 1 (negative bρ) indicates
increasing adaptation as the interaction proceeds in the condition under
examination, as successive points take less time overall. s > 1 (positive
bρ) indicates increasing confusion or difficulty in successfully pointing.

(2) The ratio between the time to complete a logged successful pointing event
and the geometric mean time to complete a successful pointing in that con-
dition, against the percentage of interaction completed.

– Since we aggregate all data, and since individual users might take longer
or shorter on average to indicate a location than others, taking the dif-
ference from the mean allows us to normalize some of the variation due
to a given subject’s natural level of aptitude with the system. Using a
ratio rather than a difference allows us to use the geometric mean of
the recorded values and thereafter plot the line of best fit using a linear
regression, which represents a more intuitive analogue of the learning
curve achieved by taking the log of both sides: log yn = log a + b log x.
The slope of the line, bµ, reflects changes in a user’s ability to success-
fully point relative to their normalized mean pointing time—regarded as
a proxy for the user’s natural “set point” ability to successfully indicate
a location to the system—in the condition under examination. As above,
negative bµ indicates adaptation to the system and positive bµ indicates
increasing confusion over time.

The figures below show the aggregate data plotted for each experimental
condition (see Table 2). In all graphs the X-axis displays the users’ progress
through their interaction trials, represented as a percentage. In the graphs on
the left, the Y-axis shows the time to complete a successful pointing event. On
the right, the Y-axis shows the time to complete a successful pointing event, as
a ratio to the geometric mean of all recorded pointing times for the user whose
time is plotted. Line of best fit is shown as a least-squares fitted power law (left),
and a linear regression (right), with b for each curve displayed in the caption.

Overall, the data tends to be dispersed when plotted against best-fit lines,
even when removing IQR outliers. Nevertheless, most points tend to cluster near
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the bottom of the plotted distributions, between 0-2 seconds for the raw pointing
times, and close to a 1:1 ratio of individual pointing times to geometric mean. We
can observe a few trends that contrast between experimental conditions, and we
expect these trends, where they appear, would be more pronounced with larger
sample size, possibly with a higher r2 value.

Fig. 5. Results in Condition 1. bρ ≈ 0.083, s ≈ 1.059; bµ ≈ 0.198

In Condition 1, both lines are almost flat, with a very slight upward curve
(bρ ≈ 0.083, s ≈ 1.059; bµ ≈ 0.198), suggesting that users did not adapt a more
efficient pointing strategy by the end of an interaction when compared to the
start. The positive b values suggest that users in this condition became slightly
less efficient at pointing, and although the values are not large enough to be
very significant, it does suggest that using the system in this condition (in the
presence of the physical table, with no additional information about its role in
the setup) may create some confusion for the user.

Fig. 6. Results in Condition 2. bρ ≈ -0.044, s ≈ 0.970; bµ ≈ -0.144
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In Condition 2, both lines are about as flat the best-fit lines in Condition 1,
trending very slightly downward (bρ ≈ -0.044, s ≈ 0.970; bµ ≈ -0.144), but also
not enough to draw a firm conclusion. Users appear not to adapt a significantly
more efficient pointing strategy in this condition (without the physical table,
with no additional information about the table’s role), or if so, the learning rate
was not fast enough to make an apparent difference over a single interaction.

Fig. 7. Results in Condition 3. bρ ≈ 0.315, s ≈ 1.245; bµ ≈ 0.455

Condition 3 demonstrates a negative learning rate (increasing time to point
successfully as the interaction goes on). As the interactions proceed, the pointing
times get notably more dispersed and the divergent values trend away from the
geometric mean of users’ pointing times (bρ ≈ 0.315, s≈ 1.245; bµ ≈ 0.455). Users
in this condition (with the physical table, told to regard it and the virtual table
as extensions of each other) appear to display increasing difficulty in indicating
a location successfully.

Fig. 8. Results in Condition 4. bρ ≈ -0.265, s ≈ 0.832; bµ ≈ -0.427
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Condition 4 is the only condition in which users display a marked ability to
adapt a more efficient pointing strategy over the course of the interaction (bρ
≈ -0.265, s ≈ 0.832; bµ ≈ -0.427). Users in this condition (without the physical
table, told to imagine that the virtual table extends into the real world) appear,
in aggregate, to be able to successfully point about 17% faster by each point at
which their cumulative number of successful pointing events has doubled (i.e.,
from 1 to 2 or from 2 to 4, etc.).

4 Conclusion

When we examine the minimal pair of conditions 1/3 vs. 2/4 (that is, the con-
ditions with the physical table and the conditions without the physical table,
regardless of users’ knowledge of the table’s role), we see a trend of increasing dif-
ficulty in successfully pointing in conditions with the table, and a trend of more
efficient pointing in conditions without the table. This is actually the opposite
of what we expected, in that the presence of the table did not seem to provide
the users with a reference point with which to ground their deictic gestures and
in fact seemed to make pointing more difficult, indicating that it introduced a
measure of confusion to the interaction, perhaps causing them uncertainty about
which was the valid reference point, the table or the screen.

In Conditions 3 and 4, the difference between the “table” condition and
“tableless” condition is more pronounced than in Conditions 1 and 2. The nearly
flat lines in Conditions 1 and 2 suggest that users barely changed their pointing
strategies in reaction to the system at all. We can speculate that in both con-
ditions they tended to settle on a particular strategy (most likely pointing at
the monitor screen/toward the avatar, as suggested by the literature, which was
also anecdotally observed during the trials1), and persisted with it through the
trials, making minimal changes despite difficulties encountered. Presented with
no suggestion about how the table might be used in the interaction, subjects
adhered to their initial pointing strategies.

Meanwhile, subjects in Conditions 3 and 4, where they are given a prompt
about the table’s role, display either marked adaptation or marked confusion.
Subjects in Condition 4 typically demonstrate appreciable adaptation in point-
ing strategies over the course of their interactions, while in Condition 3 the time
subjects took to successfully point increased regularly as the interactions went
on. We can hypothesize that, when their attention was drawn to the (physi-
cally present) table, users set about trying to use it in the interaction, and if
they did not meet with initial success (e.g., were unable to quickly figure out
that they should use it to mirror positions on the virtual table), grew confused.
In Condition 4, without the physical table present, users could perhaps more
easily imagine the virtual table extended into a space in their world and point
to coordinates relative to their own bodies (and body-centered coordinate sys-
tems do seem to be natural and ingrained in spatial representation [15]) without

1 No personal information or video of the subjects was captured.
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the distraction of another object filling the space between themselves and the
virtual world. Put simply, it’s possible that the presence of the physical table
imposed extra cognitive load on the task of trying to imagine the virtual table
extending out of the monitor. All this points to difficulties in situating oneself in
“mixed-reality” environments [7, 14], perhaps due to the cognitive load involved
in transforming one’s embodied coordinate system to that of the virtual world.
Further research would be needed to examine whether the precise phrasing of
the relationship between the physical and virtual tables might that have any
influence in the results, such as on the mental transformations being performed.

Due to the nature of the experimental setup (e.g., distractors not accounted
for in the surrounding environment or that emerge during the course of the
interaction), we should forward some caveats and possible alternate explanations
for some phenomena. In some conditions, pointing became more difficult in the
later stages of the trial. It may be that in some cases, as the target structure
emerged, it became more difficult to accurately point at the desired location
with the greater need for precision and increased density of blocks. However,
this increasing difficulty only emerges in some conditions, so in the others, it
may be overridden by the learning adaptation. In addition, the test subjects
were allowed free reign to adapt their overall strategy for the building task
(i.e., for actions supervenient on the individual vocabulary items and gestures
such as pointing), so if pointing at a particular location proved difficult, they
adapted their overall plan by (for example), moving objects to new locations
entirely (by pointing) or by loosening the constraints on what they determined
to be successful actions (e.g., allowing spaces between the blocks so that block
location could be easier to indicate by pointing).

In both physical conditions, providing explicit instructions on how to conceive
of the task led to more marked results than not providing any guidance. This
suggests that the person’s model of the situation matters, as well as the physical
situation itself.

Due to the partition of subjects into four conditions, we were only able to
run five subjects in each condition. As such, these results should be considered
tentative. Nonetheless, the conclusions suggested by the results are intriguing,
worth further examination, and may become more pronounced in studies with
more subjects.

The data we have gathered suggests that when interacting with a virtual
environment on a screen, humans have a strong preference for indicating po-
sitions relative to that screen, even when physical cues are present that imply
that the displayed scene is not the entirety of the environment involved. When
these factors are merely implicit, they seem to have little effect on subjects’ be-
havior, but when more attention is drawn to them, subjects are either able to
adapt their behavior or the environment, or find the physical cues in conflict
with their assumptions about the virtual world. Although deixis is just one part
of interacting with a virtual world, it is an important one, and this insight into
how humans treat deixis in a virtual environment should be useful to developers
seeking to build intelligent systems capable of interacting fluently with humans.
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