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Abstract. In this paper series, we argue for the role embodiment plays
in the evaluation of systems developed for Human Computer Interaction.
We use a simulation platform, VoxWorld, for building Embodied Human
Computer Interactions (EHCI). VoxWorld enables multimodal dialogue
systems that communicate through language, gesture, action, facial ex-
pressions, and gaze tracking, in the context of task-oriented interactions.
A multimodal simulation is an embodied 3D virtual realization of both
the situational environment and the co-situated agents, as well as the
most salient content denoted by communicative acts in a discourse. It is
built on the modeling language VoxML, which encodes objects with rich
semantic typing and action affordances, and actions themselves as mul-
timodal programs, enabling contextually salient inferences and decisions
in the environment. Through simulation experiments in VoxWorld, we
can begin to identify and then evaluate the diverse parameters involved
in multimodal communication between agents. In this second part of this
paper series, we discuss the consequences of embodiment and common
ground, and how they help evaluate parameters of the interaction be-
tween humans and agents, and compare and contrast evaluation schemes
enabled by different levels of embodied interaction.

Keywords: Embodiment · HCI · Common ground · multimodal dia-
logue · VoxML.

1 Introduction

In Part 1, we described the theory of computational common ground and its
underlying semantics. We focused on the role of an agent’s embodiment in cre-
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ating mechanisms through which to compute the parameter values that go into
a common ground structure, such as the target of a pointing gesture.

This is crucial to evaluating human-computer interactions because it provides
for bidirectional content: that is, each interlocutor has available all communica-
tive modalities and can use them with reference to the current situation rather
than having to communicate solely in abstractions, for lack of either a situated
context or an ability to interact with it. Put simply, an agent needs to have at
minimum the notion of a body and how it exists in an environment in order to
reference said environment with any specificity. Figure 1 shows an example of
this, with a human and an avatar making the smae gesture, that both of them
can recognize and interpret.

Figure 1: Bidirectional gesture recognition and generation.

Visual gesture recognition has long been a challenge [10,22]. Gesture recog-
nition in our VoxWorld-based embodied HCI system is facilitated by Microsoft
Kinect depth sensing [27] and ResNet-style deep convolutional neural networks
(DCNNs) [7] implemented in TensorFlow [1]. As our goal in developing multi-
modal interactions is to achieve naturalistic communication, we must first ex-
amine what we mean by and desire of an interaction such as that illustrated in
Section 2.

We take the view that a “meaningful” interaction with a computer sys-
tem should model certain aspects of a similar interaction between two humans.
Namely, it is one where each interlocutor has something “interesting” to say,
and one that enables them to work together to achieve common goals and build
off each other’s contributions, thereby conveying the impression to the user that
the computer system is experiencing the same events. We therefore build the
evaluation scheme off of the following qualitative metrics:

1. Interaction has mechanisms to move the conversation forward [4,11]
2. System makes appropriate use of multiple modalities [2,3]
3. Each interlocutor can steer the course of the interaction [8]
4. Both parties can clearly reference items in the interaction based on their

respective frames of reference [21,26,29]
5. Both parties can demonstrate knowledge of the changing situation [28]

In [18] we introduced a surface-level evaluation scheme that satisfies the above
requirements. In this scheme, we took the view that a “meaningful” interaction
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with a computer system should model certain aspects of similar interactions
between two humans, namely that each interlocutor should have something to
contribute that enables them to work together toward common goals, building
off each other’s contributions. This is discussed in Section 2.1.

This multimodal evaluation scheme was an attempt to quantify qualitative
metrics based on the body of work underlying “common ground” in communi-
cation and multimodality in human-computer interaction.

These metrics, or “hallmarks” of communication, come from a rubric initially
developed by the MITRE Corporation to evaluate peer-to-peer communication
with computers on collaborative tasks. It was recently published as a technical
report [13]. The hallmarks are intended to evaluate collaborative computer sys-
tems engaged in tasks of various complexities where there is not a single ground
truth or “right answer” to compare to.

The results of the surface-level evaluation made it clear that the single di-
mension of response time as a proxy for communicativity of the preceding utter-
ances or actions was not exposing the deep semantics or information content of
the multimodal utterance, even when conditioned on context. Therefore a finer-
grained evaluation scheme was needed—one that took into fuller consideration
the parameters of common ground. This will be discussed in Section 2.2. We will
then conduct a novel comparison of the two scenarios and evaluation methods
with regard to the parameters of the common ground, in Section 2.3.

2 Evaluation Schemes

We have conducted a variety of studies on multimodal interactions using Di-
ana, an embodied agent capable of interpreting linguistic and gestural inputs.
Diana is one of many kinds of agents that can be implemented within the Vox-
World plaform; she is designed to communicate with a human in the context
of collaborative tasks. VoxSim (discussed in Part 1) handles Diana’s language
interpretation using inputs from 3rd-party or custom speech recognition, while
gestures are recognized using custom 11-layer deep convolution neural nets (DC-
NNs) trained over 2048-dimensional feature vectors extracted from RGBD video
data.

Figure 2: L: Diana c. 2018; R: Diana c. 2020.
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Diana has undergone numerous updates over time, from taking gestural in-
puts only [15] to word-spotting to recognizing complete utterances [23], and from
a turn-taking interaction to one that is more asynchronous [14]. It is this specific
embodied interactive agent that we conducted our evaulations against, as we
detail subsequently.

2.1 Time-based Evaluation

In [25], Wang et al. conducted user studies of two humans engaged in a collab-
orative building task wherein a “builder” with a target pattern of blocks had to
instruct a “signaler” on how to build that pattern out of a physical set of blocks.
Users were placed in one of three conditions:

1. Video only, where the signaler and builder can see but not hear each other
and must rely on gesture to communicate;

2. Audio only, where the signaler can see the builder but the builder can only
hear the signaler—the two can use only language to communicate bidirec-
tionally;

3. Both audio and video, where both gestural and spoken communication are
available.

These elicitation studies gave rise to the gesture set used by the Diana system,
and also showed an interesting conclusion: the subjects could complete the task
in all conditions, but when both linguistic and gestural modalities were available,
the users could complete the task in significantly less time. Figure 3 shows these
differences in trial time based on modality.

Figure 3: In human-to-human collaborative studies, users complete tasks faster
using both audio and visual channels. Figure credited to Dr. Jaime Ruiz of the
University of Florida.

Therefore, in evaluating early versions of Diana, we adopted a similar as-
sessment of communicative facility, where the time required to achieve a com-
municative goal was taken to be a surface-level indicator of the communicative
content of the utterance, which was then assessed relative to the communicative
modalities used.



Title Suppressed Due to Excessive Length 5

This study was conducted using 20 graduate students placed in a live inter-
action with Diana (e.g., see Figure 2L). They were tasked with building a 3-step
staircase out of six blocks and were told that Diana could understand gesture
and language but were not given a specific vocabulary to use. We collected no
identifying audio or video directly from the user but logged all instructions the
computer recognized from the user, and Diana’s responses.

Details are given in [18], but among other findings, we discovered discrepan-
cies in the communicative facility of the handedness of the pointing (right-handed
pointing prompted quicker responses than left-handed pointing), affirmative vs.
negative acknowledgments (affirmatives prompted slower responses than nega-
tives, particularly when spoken instead of gestured), and “push” gestures vs.
“carry” gestures (pushing prompted quicker responses than carrying). These
and other particulars can be ascribed to a number of factors, including vari-
ance in the gesture recognition, complexity of the gesture being made, and the
use of positive acknowledgment as an explicit requirement for the conversation
to proceed vs. negative acknowledgment as a contentful way of redirecting the
discourse (cf. [12]).

These conclusions were useful in making improvements to the Diana agent,
but given the coarse granularity of this high-level evaluation, it is clear that mul-
tiple dimensions are being masked; the important discriminative factor(s) in the
communicativity of an utterance by an embodied interlocutor in a multimodal
discourse might not be the time to receive a response, but rather how much and
what information is being introduced via the multimodal utterance.

2.2 Common Ground-based Evaluation

In [19], we presented the EMRE (Embodied Multimodal Referring Expressions)
dataset. This dataset contains 1,500 individual videos of Diana generating mul-
timodal references to 6 different objects in 50 different configurations using 5
different strategies (one gestural only, two linguistic only, and two multimodal).

Figure 4: Sample still from a video in the EMRE dataset. The accompaying
utterance is “That red block on front of the knife.”
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Each of these videos were then judged by 8 annotators on Amazon Mechan-
ical Turk who indicated, on a Likert-type scale, how natural they thought the
depicted referring expression was.

Initial analysis of the EMRE dataset provided similar surface-level conclu-
sions to the time-based evaluation, and showed the evaluators preferred multi-
modal referring expressions and more descriptive language where language was
used.

Following this, in [20], we conducted a further detailed evaluation of these
object referencing strategies, using the common ground structure (CGS) as a
feature generation strategy, and assessed how well individual classes of features
predicted the Likert-type rating of the naturalness of a referring expression in
the dataset. See Part 1 for an explanation of the CGS parameters that will be
referenced below.

We extracted formal and propositional values as features from the EMRE
data based on the information each feature introduces into the common ground.
If the gesture (G) or speech (S) content in the referring expression demonstrates
that either agent α (being either αa the artificial agent or αh the human) either
knows or perceives some propositional content p that pertains to either the jointly
perceived entities in P or the agents’ beliefs B about what each other know or
understand, this prompts an update to the common ground, and therefore new
features for possible examination. This allows us to evaluate the behavior of
annotators as a proxy for interlocutors, by examining what features are good
predictors for naturalness judgments when interpreting referring expressions.

Details are given in [20]. We trained a multi-layer perceptron (MLP) clas-
sifier to predict the naturalness of a given referring strategy based on different
combinations of input features. Possible input features included features taken
directly from the EMRE dataset, sentence embedding features extracted from
the linguistic portion of multimodal referring expressions, and features extracted
from the CGS of each referring expression represented as individual one-hot vec-
tors. For instance, if the communicative act Ca contains a speech component S
that in turn contains the word “other” in conjuction with some attributive Att
and an object type t, then this indicates that a knows 3 things: that there is
more than one object of type t in the discourse, that they are distinct, and that
Att predicates over both (or all) of them. Each of these knowledge elements Ka

of the common ground is represented as a distinct one-hot vector.

This MLP classifier was then cross-validated on the EMRE data using 7
folds. We found that features that correlate formally with elements of the CGS
improved the ability of the classifier to predict the annotator judgment on a re-
ferring expression by an average of 7-11%, when compared to the EMRE dataset
features, with or without augmentation with sentence embeddings. When exam-
ining language-only referring expressions, addition of CGS-derived features im-
proved classification accuracy by 5-16%, with using CGS-derived features alone
providing the highest boost, bringing cross-validated classification accurary up
to ∼80% from a baseline of ∼64%.
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CGS-derived features provided only a 1-5% boost in classifying ensemble
(multimodal) referring expressions. However, we interpret this result as repre-
senting a redundancy in information communicated through the existence of a
gesture as part of the referring expression, and the same content occurring in the
common ground structure: Pointg → Obj occurs in the CGS and its use indicates
that the agent αa knows what a pointing gesture is intended to communicate,
but that information is already contained in the EMRE dataset features, which
tracks the modality used by each RE.

2.3 Comparing Time-based and Common Ground-based Evaluation

Let us now examine a specific sample from each of the two evaluation schemes
where an agent makes a reference to an object in the scene, and look at how much
and what kind of information the time-based and CGS-based metrics provide,
respectively.

Figure 5 shows the log from the time-based evaluation. The first column is the
index of the “move” in the interaction. The second column is a two-letter code
representing the Avatar or the Human plus the modality (Gesture or Speech).
The third column is the content of the move, which may be a utterance or gesture
generated by the avatar, or a word recognized as being spoken by the human
or a gesture recognized by the DCNN recognizer. For example, right point

low,X,Y denotes a low-probability pointing gesture with the right hand at the
2D coordinates < X,Y >, which is then transformed in to 3D space. The fourth
column is the timestamp (multiple moves can have the same timestamp).

81 AS "Which object do you want?" 34.3762

82 HG right point low,0.24,1.59 37.148

83 HG right point stop 38.7285

84 HG right point low,0.24,1.60 38.99577

85 HS PURPLE 39.1167

86 AS "OK, go on." 39.1167

87 AG reach(block7) 39.1167

Figure 5: Sample of object referencing using time-based evaluation.

In this snippet, the avatar asked the human “Which object do you want?”
(move 81) to which the human responded by starting to point (move 82). The
tag low indicates that this gesture was not defind enough for the avatar to inter-
pret. Eventually the human says “purple,” (move 85) which the avatar is able to
understand and respond to (move 86). From the point that the avatar requested
input from the human to the point that the human supplied understandable
input to the avatar, 4.7405 seconds elapsed. This number can thereafter be com-
pared to similar blocks of moves where different gestures or different utterances
are used to see how these sequence advances or slows the interaction. Examining
this in isolation, we can also see that the most delay results from the difficulty
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the human has in pointing to a distinct, interpretable location (moves 82-84).
The use of the linguistic modality is what allows the interaction to proceed here.

Figure 6 shows a still from a video in the EMRE dataset, with the corre-
sponding common ground structure. The items in P are the non-agent items in
the scene, where the non-uniquely colored blocks are denoted by subscripts 1

and 2. B is the belief space ∆ which is populated by elements of the common
ground. Items in this belief space are extracted as one-hot vector features in the
evaluation described in Section 2.2.

This referring expression was presented to the 8 annotators mentioned in the
EMRE study, alongside 3 other choices to refer to the same object:

1. Pointing only;
2. “The purple block in front of the red block” (language only);
3. “That purple block” (with pointing).

Of the 8 annotators, 6 judged this referring expression to be most natural
(5 on the 1-5 Likert-type scale), while the remaining 2 judged it to be a 4. The
MLP classifier also predicted that this RE would receive a score of 5. Examining
the individual features introduced into the common ground by each candidate
RE illuminates why:

– Pointing alone (1) is ambiguous. Peforming the pointing gesture introduces
into the common ground the fact that αa knows how to point and what it
means: Ca = (G ∣ G = Pointg → Obj → ), but what fills that slot is unclear.
From the camera angle shown the deixis could be indicating either of the
purple blocks or even the red block at the back of the table.

– Adding the utterance “that purple block” (3) introduces the demonstrative
“that” (in contrast to “this”) and suggests that αa has some knowledge of the
near/far distance distinction on which the demonstrative distinction is based:
Ca = (S,G ∣ G = Pointg ∧

′′ that′′ ∈ S) → Ka[[near(sfc)]] ≠ [[far(sfc)]]M.
This is still ambiguous; the demonstrative is coupled with deixis, but both
purple blocks are in the direction of the gesture.

– The language-only RE “the purple block in front of the red block” (2) intro-
duces the color attribute as a distinction αa uses, as well as the spatial term
“in front of”: Ca = (S ∣ [

′′purple′′,′′ red′′, b1s , b2s] ∈ S) → KaJ′′purple′′(b1)K ∧
J′′red′′(b2)K ∧ J′′purple′′K ≠ J′′red′′K However, it is still ambiguous; there are
red blocks on either side of the two purple blocks. Therefore, “in front of”
could be interpreted as either (relative to the camera) “closer to me” or
“away from me.”

– Integrating deixis and the descriptive language of the RE given in Figure 6
singles out three relations relative to the target object as well as an inter-
pretation of “other” relative to the attribute it scopes over (in this case,
“purple”): Ca = (S ∣ [

′′other′′, b1s , b2s] ∈ S ∧ b1s = b2s) → KaJAtt(b1 ∧ b2)KM ∧
Kab1 ≠ b2, such that if Att = “purple,” αa knows what that means, knows
that it applies to both blocks b1 and b2, and knows that the two objects are
distinct. Only one of these blocks is right of a green block, in front of a red
block, in the direction of deixis, and far enough from the agent to use “that”
as a demonstrative, and so resolve to the correct target object (see Figure 7).
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A:αa, αh B:∆ P: t, c, k, pl, p1, p2, r1, r2, g1, g2 E ∶ E

GUαa

Pointg

Obj

p1

Dir

d

Sαa

PPLoc

behind the other
purple block

PPLoc

in front of
the red block

PPLoc

right of the
green block

DemO

that purple block

λks ⊗ kg(that(x)[block(x) ∧ purple(x) ∧ right(x, g1, v) ∧ in front(x, r1, v) ∧
behind(x, p2, v)] ∧ ks ⊗ kg(x)], where v = αa

Figure 6: Sample from the EMRE dataset, with accompanying utterance “that
purple block right of the green block, in front of the red block, and behind the
other purple block,” and corresponding common ground structure. The seman-
tics of the RE includes a continuation (in the abstract representation sense in
computer science, cf. Van Eijck and Unger [24]) for each modality, ks and kg,
which will apply over the object in subsequent moves in the dialogue. v denotes
the viewer, i.e., frame of reference.

Compared to the time-based evaluation, using common ground strutures as
a data structure from which to extract evaluation-relevant features allows the
examination of specific featurs relative to the information they introduce into
the interaction. Many of the most informative features, such as what an agent α
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Figure 7: The target object of the RE depicted in Figure 6, shown highlighted
with a circle.

knows about distance and spatial relations between objects, are dependent upon
how the agent is situated or embodied in the world.

2.4 How Embodiment Enables Evaluation

By embedding the communicative interaction within an embodied simulation
environment, we are able to vary the parameters involved in the interaction the
human has with a computational agent, and thereby measure the consequences
these changes have on the effectiveness of the specific components of the inter-
action. VoxML provides a dynamic, interpretable model of objects, events, and
their properties. This allows us to create visualized simulations of events and
scenarios that are rendered analogues to the “mental simulations” discussed in
Part 1. VoxSim [16,17] serves as the event simulator within which these simula-
tions are created and rendered in real time, serving as the computer’s method of
visually presenting its interpretation of a situation or event. Because modalities
are modes of presentation, a multimodal simulation entails as many presenta-
tional modes as there are modalities being modeled. The visual modality of
presentation (as in embodied gaming) necessitates “situatedness” of the agent,
as do the other perceptual modalities. Therefore, when we speak of multimodal
simulations, they are inherently situated. In a human-computer interaction us-
ing such a simulation, the simulation is a demonstration of the computational
agent’s “mind-reading” capabilities (an agent simulation). If the two are the same
(where the agent is a proxy for the player or user, then the “mind-reading” is
just a demonstration of the scenario) If, on the other hand, the two are separate
(agent is not proxy for the user), then the simulation/demonstration communi-
cates the agent’s understanding of the user and the interaction. In this case, this
demonstration entails the illustration of both epistemic and perceptual content
of the agent.

We believe that simulation can play a crucial role in human-computer com-
munication; it creates a shared epistemic model of the environment inhabited by
a human and an artificial agent, and demonstrates the knowledge held by the
agent publicly. Demonstrating knowledge is needed to ensure a shared under-
standing with its human interlocutor. If an agent is able to receive information
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from a human and interpret that relative to its current physical circumstances,
it can create an epistemic representation of that same information. However,
without a modality to express that representation independently, the human is
unable to verify or query what the agent is perceiving or how that perception is
being interpreted. In a simulation environment the human and computer share
an epistemic space, and any modality of communication that can be expressed
within that space (e.g., linguistic, visual, gestural) enriches the number of ways
that a human and a computer can communicate within object and situation-
based tasks, such as those investigated by Hsiao et al. [9], Dzifcak et al. [6], and
Cangelosi [5], among others.

VoxWorld, and the accompanying simulation environment provided by VoxSim,
includes the perceptual domain of objects, properties, and events. In addition,
propositional content in the model is accessible to the simulation. Placing even
a simple scenario, such as a blocks world setup, in a rendered 3D environment
opens the search space to the all the variation allowed by an open world, as
objects will almost never be perfectly aligned to each other or to a grid, with
slight offsets in rotation caused by variations in interpolation, the frame rate, or
effects of the platform’s physics. Nevertheless, when the rendering is presented
to a user, the user can use their native visual faculty to quickly arrive at an
interpretation of what is being depicted.

3 Conclusion

In this paper series, we have brought toegther a number of definitions of “simu-
lation” from the AI, cognitive science, and game development literature, into a
single platform that creates both a formal and operational defintion of “embodi-
ment” in the content of Human-Computer Interaction. This framework provides
both quantitative and qualitative outputs that can be used to produce, evaluate,
and learn from datasets.

When combined with formal encodings of object and event semantics, at
a level higher than treating objects as collections of geometries, or events as
sequences of motions or object relations, 3D environments provide a powerful
platform for exploring “computational embodied cognition.” Recent develop-
ments in the AI field have shown that common-sense understanding in a general
domain requires either orders of magnitude more training data than traditional
deep learning models, or more easily decidable representations, involving con-
text, differences in perspective, and grounded concepts, to name a few.

In Part 1, we introduced the underlying theory of computational common
ground and its relation to the associated semantic literature. Included in this
was the introduction of embodiment to our formulation and platform, as well
as the formal notion of the common-ground structure, and how embodiment
facilitates the populating thereof.

In Part 2, we presented and compared particular experiments done under
versions of this framework using the embodied agent Diana. We hope to have
demonstrated how the combination of formal semantics with the technologies
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provided by modern gaming engines lead to systems that afford gathering both
traditional data for deep learning and representations of common sense, situ-
ated, or embodied understanding, thereby opening new doors for researchers to
deploy and examine the role of embodiment in human-computer interaction both
quantitatively and qualitatively.
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