
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz 
https://doi.org/10.1007/s13218-021-00727-5

TECHNICAL CONTRIBUTION

Embodied Human Computer Interaction

James Pustejovsky1   · Nikhil Krishnaswamy2

Received: 7 December 2020 / Accepted: 11 May 2021 
© Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In this paper, we argue that embodiment can play an important role in the design and modeling of systems developed for 
Human Computer Interaction. To this end, we describe a simulation platform for building Embodied Human Computer 
Interactions (EHCI). This system, VoxWorld, enables multimodal dialogue systems that communicate through language, 
gesture, action, facial expressions, and gaze tracking, in the context of task-oriented interactions. A multimodal simulation 
is an embodied 3D virtual realization of both the situational environment and the co-situated agents, as well as the most 
salient content denoted by communicative acts in a discourse. It is built on the modeling language VoxML (Pustejovsky and 
Krishnaswamy in VoxML: a visualization modeling language, proceedings of LREC, 2016), which encodes objects with 
rich semantic typing and action affordances, and actions themselves as multimodal programs, enabling contextually salient 
inferences and decisions in the environment. VoxWorld enables an embodied HCI by situating both human and artificial 
agents within the same virtual simulation environment, where they share perceptual and epistemic common ground. We 
discuss the formal and computational underpinnings of embodiment and common ground, how they interact and specify 
parameters of the interaction between humans and artificial agents, and demonstrate behaviors and types of interactions on 
different classes of artificial agents.
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1  Introduction

One of the most persistent and challenging problems facing 
both the areas of Human–Computer Interaction (HCI) and 
Human-Robot Interaction (HRI) involves communicating 
intentions, goals, and attitudes through multiple modalities 
beyond language, including gesture, gaze, facial expressions, 
and situational awareness [14, 32, 51, 64, 84, 98]. For exam-
ple, within the HRI community, there has been a growing 
interest in how to contextually resolve ambiguities that may 
arise from communication in situated dialogues, ranging 

from discussions on how HRI dialogues should be designed 
[31, 57, 85], how perception and grounding can be inte-
grated into language understanding [58, 67], to more recent 
work on task-oriented dialogues [90]. This is the problem 
of identifying and modifying the common ground between 
speakers [2, 17, 88, 91]. It has long been recognized that a 
linguistic utterance’s meaning is subject to contextualized 
interpretation; but this is also the case with gestures in task-
oriented dialogues. Depending on the situation, for exam-
ple, an oriented hand gesture could refer either to an action 
request (“move it”) or a dismissive response (“forget it”) 
[101]. A pointing gesture might designate a specific object, 
a location, or a direction, as illustrated in Fig. 1. Even a 
request for action can be underspecified, denoting either a 
continuous movement or a movement to a specific location.

Similarly, depending on the situation, the definite descrip-
tion in the command “Open the box.” may uniquely refer 
or not, depending on how many boxes are in the context. 
These and similar miscommunications or the need for 
clarification in dialogue have been called situated ground-
ing problems [63], and can be viewed as problematic in a 
model that appeals to and encodes both a visual modality 
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and situational information into the dialogue state. What the 
occurrence of these issues makes apparent is the complex-
ity underlying the interpretation of referential expressions 
in actual situated dialogues. The richness provided by situ-
ationally grounding computer or robot behaviors brings to 
the surface interpretive questions similar to those of a human 
in the same scenario.

We will argue that natural human–computer interactions 
involving intelligent virtual agents (IVAs) require not only 
that the artificial agent itself be embodied, but that the entire 
interaction between the human and the IVA must be embod-
ied, in order to fully establish the common ground that both 
agents share to communicate fluently. We will refer to this 
as an embodied Human–Computer Interaction, and develop 
this idea below.

In typical task-oriented interactions between humans, (as 
shown in Fig. 2), actions, gesture, and language are situated 
within a common ground. For such situations, the common 
ground includes the following characteristics:

–	 Co-situatedness and co-perception of the agents, such 
that they can interpret the same situation from their 
respective frames of reference.

–	 Co-attention of shared situated references, allowing 
richer expressiveness in referring to the environment 
(i.e., using language, gesture, visual presentation, etc.). 
The human and avatar might be able to refer to objects 
on the table in multiple modalities with a common model 
of differences in perspective-relative references.

–	 Co-intent or agreement of the common goals in a dia-
logue. It is important to recognize the intent of other 
agents, to facilitate the interpretation of their expressions.

In order to achieve these goals, human–computer/robot inter-
actions require robust recognition and generation of expres-
sions through multiple modalities (language, gesture, vision, 
action), and the encoding of situated meaning: this entails 
three aspects of common ground interpretation: (a) the situ-
ated grounding of expressions in context; (b) an interpre-
tation of the expression contextualized to the dynamics of 
the discourse; and (c) an appreciation of the actions and 
consequences associated with objects in the environment.

With this in mind, many HCI researchers have adopted 
the notion of “embodiment” in order to better understand 
user expectations when interacting with artificial agents. 
Embodied agents or avatars add new dimensions to human-
agent interactions compared to voice- or text-only conver-
sational artificial agents. Embodied agents can express emo-
tions and perform gestures, two crucial non-verbal modes of 
human communication. Potentially, this enables such arti-
ficial agents to have more human-like, peer-to-peer interac-
tions with users. Unfortunately, embodiment alone does not 
avoid some of the key limitations of conversational artificial 
agents. Even embedded in an avatar, most artificial agents 
won’t know what you are pointing at. As with verbal con-
versations, visual communication mechanisms like gestures, 
expressions, and body language need to be two-way.

In this paper, we present a model of embodiment that is 
implemented in VoxWorld, a simulation platform for mod-
eling and building embodied Human–Computer Interactions. 
We describe the formal and computational properties of 
VoxWorld, including how it encodes and deploys embodi-
ment centrally in interpreting dialogue, intentions, goals, and 
attitudes, and in executing actions in a situated context. We 
also provide examples of how differently-embodied artificial 
agents can use the same underlying formal and computa-
tional model to reason about and execute different behaviors 
based on the particulars of their respective embodiments. 
Throughout the paper, we discuss how the features of our 
model of embodiment compare to related approaches mod-
eling situated grounding and perception, such as that taken 

Fig. 1   Diana, an Embodied Artificial Agent, engaging in an embod-
ied HCI with a human user. The purple circle around the red block 
shows where the user (top right panel) is pointing

Fig. 2   Mother and child baking
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in [26], with the application of Type Theory with Records 
(TTR) [19, 25].

2 � The Meaning of Embodiment

There are many dimensions to the meaning of “embodi-
ment” in cognitive psychology, AI, and communication 
[1, 15, 48, 64, 87]. In the context of human–computer and 
human–robot interaction, there are at least three aspects of 
embodiment for an artificial agent, beyond the conventional 
agent architecture entailing belief and intent, that we believe 
are crucial for effective communication. These include rep-
resentations for the following factors:1

–	 Self-embodiment of the artificial agent: it is registered 
with a “spatial presence” within the domain or space of 
the interaction (the embedding space); it has a skeletal 
form, explicit effectors for action, and explicit sensors 
for audio and visual input2. Constraints on its behavior 
are imposed by the physical extents and limitations of 
the embodiment (e.g., how far it can reach, degrees of 
freedom on the joints, etc.).

–	 The human’s embodiment; recognition of the partner’s 
linguistic and gestural expressions, facial expressions, 
and actions. Just as the human perceives the artificial 
agent’s embodiment and real and virtual space and inter-
prets this cognitively, the artificial agent continously 
receives inputs through which it constructs and maintains 
a representation of its human partner’s embodiment.

–	 Situated meaning for the objects and actions in the envi-
ronment; an elementary understanding of how objects 
behave relative to each other and as a consequence of 
the agent’s actions (affordances, action dynamics, etc). 

This may also extend to notions like frame of reference 
and an agent’s knowledge (or lack thereof) that its inter-
pretation of certain propositions or predicates (e.g., “x is 
left of  y”) may differ from that of other agents, based on 
factors like frame of reference. For instance, if a human 
says “left” and points to their own right, that should sig-
nal to the artificial agent that the human has adopted the 
artificial agent’s egocentric frame of reference.

When these conditions are present in the artificial agent, along 
with the properties of the common ground discussed above, 
we will say that an interaction between an artificial agent and 
a human is “embodied.”

Not part of these conditions but related is a notion of 
situated pseudo-embodiment where the artificial agent has 
no physical embodiment but is represented by a dynamic 
point of view or camera in virtual space. This may be a 
floating first-person camera that can move and turn and is 
hence limited in its ability to interact with the environment 
but can present to the human interlocutor what it sees and 
can conduct certain reasoning about the environment. For 
obvious reasons, this is only possible with virtual artificial 
agents although can be approximated by physical agents in 
certain situations (see Sect. 11).

3 � Semantic Typing and Qualia Structure

A significant part of any model for situated communication 
is an encoding of the semantic type, functions, purposes, and 
uses introduced by the objects under discussion. For example, 
a semantic model of perceived object teleology, as introduced 
by Qualia Structure, for example [73], as well as object affor-
dances [34] is needed to help ground expression meaning to 
speaker intent.

Let us assume, following Generative Lexicon (GL) [73] and 
other type-driven semantic approaches [3, 18, 49], that lexi-
cal entries in the object language are given a feature structure 
consisting of a word’s basic type, its parameter listing, its event 
typing, and its qualia structure. The semantics of an object will 
consist of the following:

Objects can be partially contextualized through their qualia 
structure [77]. Each Qualia role can be seen as answering a 
specific question about the object it is associated with:

–	 Formal: encoding taxonomic information about the lexi-
cal item (the is-a relation);

–	 Constitutive: encoding information on the parts and con-
stitution of an object (part-of or made-of relation);

–	 Telic: encoding information on purpose and function (the 
used-for or functions-as relation);

–	 Agentive: encoding information about the origin of the 
object (the created-by relation).

(1)

a. ������ ��������� (formal) ∶ objects expressed as basic nominal types

b. ��������� ��������� (const) ∶ mereotopological structure of objects

c. ����� ��������� (telic and agentive) ∶ origin and functions associated with an object

d. ����������� ��������� ∶ how objects fit together in space and through coordinated activities.

1  This recalls the question of how to best model situated action [16, 
97].
2  See Sect. 5 for details on integrating various sensor types and their 
relationships with the particulars of the artificial agent’s embodiment.
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Taken together, the answers to these questions can help eluci-
date the meanings of words in the language. We can view the 
qualia structure of a lexical item, � , as the four features below 
in (2), where F=formal, C=const, T=telic and A=agentive.

Objects under discussion in discourse (cf. [36]) can be par-
tially contextualized through their semantic type and their 
qualia structure: a food item has a telic value of eat, an 
instrument for writing, a telic of write, a cup, a telic of 
hold, and so forth. For example, the GL lexical semantics 
for the noun chair in (3) carries a telic value of sit_in , while 
the concept of letter in (4) carries a telic value of read and 
an agentive value of write.3

However, while an artifact may be designed for a specific 
purpose, this can only be achieved under specific circum-
stances. To account for this context-dependence, [74] 
enriches the lexical semantics of words denoting artifacts 
(the telic role specifically) by introducing the notion of an 
object’s habitat, which encodes these circumstances. For 
example, an object, x, within the appropriate habitat (or con-
text) C , performing the action � will result in the intended 
or desired resulting state, R , i.e., C → [�]R . That is, if the 
habitat C (a set of contextual factors) is satisfied, then every 
time the activity of � is performed, the resulting state R will 
occur. It is necessary to specify the precondition context 
C , since this enables the local modality to be satisfied. An 
illustration of what the resulting knowledge structure for the 
habitat of a chair is shown in the QS entry below.

The habitat for an object is built by first placing it within an 
embedding space and then contextualizing it. For example, 

(2)

(3)

(4)

(5)

in order to use a table, the top has to be oriented upward, the 
surface must be accessible, and so on. A chair must also be 
oriented up, the seat must be free and accessible, it must be 
able to support the user, etc.

The embedding space for an activity is meant to deline-
ate the dynamic spatial region referenced when an agent is 
engaged in any self or joint interaction in its environment. 
Since it is functionally as well as spatially defined [35, 78], 
it shares aspects with Coventry’s work on functional rela-
tions in space [21]. While embedding space is unique to 
our approach, it is possible to relate it to aspects of spatial 
description within the TTR model, as developed in [25]. 
Assume we identify the region defined by the set of con-
straints on the “spatial templates” associated with each agent 
in an interaction. This would correspond to the dependent 
type RegionObject, which includes both the interlocutors 
and the salient 3D convex hull including the objects under 
discussion.

4 � VoxML and Situated Meaning

4.1 � Objects and Affordances

The notion of habitat described above and the attached 
behaviors that are associated with an object are further 
developed in [78], where an explicit connection to Gibson’s 
ecological psychology is made [35], along with a direct 
encoding of the affordance structure for the object [34]. The 
affordance structure available to an agent, when presented 
with an object, is the set of actions that can be performed 
with it. We refer to these as gibsonian affordances, and they 
include “grasp”, “move”, “hold”, “turn”, etc. This is to dis-
tinguish them from more goal-directed, intentionally situ-
ated activities, what we call telic affordances.

Extending this notion, we define a habitat as a represen-
tation of an object situated within a simulation, a partial 
minimal model [12, 50, 53]; in this sense, it is a directed 
enhancement of the qualia structure. Multi-dimensional 
affordances determine how habitats are deployed and how 
they modify or augment the context, and compositional 
operations include procedural (simulation) and operational 
(selection, specification, refinement) knowledge.

The language used to construct this simulation is called 
VoxML (Visual Object Concept Modeling Language) [78]. 
VoxML is a modeling language for constructing 3D visuali-
zations of concepts denoted by natural language expressions, 
and is being used as the platform for creating multimodal 
semantic simulations in the context of human-computer 
and human-robot communication [54]. It adopts the basic 
semantic typing for objects and properties from Generative 
Lexicon and the dynamic interpretation of event structure 3  as = argument structure; qs = qualia structure.
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developed in [80], along with a continuation-based dynamic 
interpretation for both sentence and discourse composition 
[5, 9, 23].

VoxML forms the scaffolding we use to encode knowl-
edge about objects, events, attributes, and functions by link-
ing lexemes to their visual instantiations, termed the “visual 
object concept” or voxeme.

Entities modeled in VoxML can be objects, programs, 
or logical types. Objects are logical constants; programs 
are n-ary predicates that can take objects or other evaluated 
predicates as arguments; logical types can be divided into 
atributes, relations, and functions, all predicates which 
take objects as arguments. Attributes and relations evalu-
ate to states, and functions evaluate to geometric regions. 
These entities can then compose into visualizations of natu-
ral language concepts and expressions. For example, the 
attributes associated with objects such as cup, chair, and 
block, include the following: 

Lex Object’s lexical information
Type Object’s geometrical typing
Habitat Object’s habitat for actions
Afford_Str Object’s affordance structure
Embodiment Object’s agent-relative embodi-

ment

The Lex attribute contains the subcomponents Pred, the 
predicate lexeme denoting the object, and Type, the object’s 
type according to Generative Lexicon.

Voxemes representing humans or IVAs are lexically typed 
as agents, but artificial agents, due to their embodiments, 
ultimately inherit from physical objects and so fall under 
objects in the taxonomy. In parallel to a lexicon, a collection 
of voxemes is termed a voxicon. There is no requirement on 
a voxicon to have a one-to-one correspondence between its 
voxemes and the lexemes in the associated lexicon, which 
often results in a many-to-many correspondence. That is, 
the lexeme plate may be visualized as a [[square plate]]4, 

a [[round plate]], or other voxemes, and those voxemes in 
turn may be linked to other lexemes such as dish or saucer. 
Each voxeme is linked to either an object geometry, a pro-
gram in a dynamic semantics, an attribute set, or a transfor-
mation algorithm, which are all structures easily exploitable 
in a rendered simulation platform.

An object’s voxeme structure provides habitats, which 
are situational contexts or environments conditioning the 
object’s affordances, which may be either “Gibsonian” 
affordances [34] or “Telic” affordances [73, 74]. A habitat 
specifies how an object typically occupies a space. When 
we are challenged with computing the embedding space for 
an event, the individual habitats associated with each par-
ticipant in the event will both define and delineate the space 
required for the event to transpire. Affordances are used as 
attached behaviors, which the object either facilitates by its 
geometry (Gibsonian) or purposes for which it is intended 
to be used (Telic). For example, a Gibsonian affordance for 
[[cup]] is “grasp,” while a Telic affordance is “drink from.” 
This allows procedural reasoning to be associated with habi-
tats and affordances, executed in real time in the simula-
tion, inferring the complete set of spatial relations between 
objects at each frame and tracking changes in the shared 
context between human and computer.5

For example, the object geometry for the concept [[cup]], 
along with the constraints on symmetry, is illustrated below.

Consider now the various habitats identified with [[cup]].

Finally, given these habitats, we can identify the associated 
behaviors that are enabled (afforded) in such situations:

Indeed, object properties and the events they facilitate 
are a primary component of situational context. In Fig. 3, 
we understand that the cup in the orientation shown can 
be rolled by a human. Were it not in this orientation, it 

(6)

(7)

(8)

Fig. 3   Cup in different habitats allowing sliding and holding (left) 
and rolling (right)

4  Beginning in [52], voxemes have been denoted [[voxeme]].
5  It should be noted that Gibsonian affordances might be construed 
as the goal of an activity in some contexts.
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might be able to be only slid across its supporting surface 
(cf. (9)).

This voxeme for [[cup]] gives the object appropriate 
lexical predicate and typing (a cup is a physical object and 
an artifact). It denotes that the cup is roughly cylindrical 
and concave, has a surface and an interior, is symmetrical 
around the Y-axis and across associated planes (VoxML 
adopts 3D graphics conventions, where the Y-axis is verti-
cal), and is smaller than and movable by the artificial agent. 
The remainder of VoxML typing structure is devoted to 
habitat and affordance structures, which we discuss below.

(6–8) respectively show the typing, habitat, and affordance 
structure of [[cup]], which are brought together in the com-
plete VoxML encoding in (9). Bracketed numbers, (e.g., 
[1]) are reentrancy indices; terms annotated with the same 
number refer to the same entitiy. For instance, in habitat 2 
( H[2] ), the intrinsic habitat where the cup has an upward ori-
entation, if an agent puts some x inside the cup’s cylindroid 
geometry ([1]), the cup contains x.

4.2 � Actions and Their Consequences

VoxML treats actions and events within a dynamic event 
semantics as programs [62, 80]. Event structure is enriched 
to not only encode but dynamically track those object attrib-
utes modified in the course of the event (the location of the 
moving entity, the extent of a created or destroyed entity, 
etc.). The resulting event structure representation is called 
a Dynamic Event Structure [74]. Starting with the view that 
subevents of a complex event can be modeled as a sequence 
of states (containing formulae), a dynamic event structure 
explicitly labels the transitions that move an event from state 
to state, i.e., programs [10, 30, 70].

A dynamic approach to modeling updates makes a dis-
tinction between formulae, � , and programs, � . A formula 
is interpreted as a classical propositional expression, with 
assignment of a truth value in a specific state in the model 

(9)

[44]. For our purposes, a state is a set of propositions with 
assignments to individual variables at a specific frame. We 
can think of atomic programs as input/output relations, i.e., 
relations from states to states, and hence interpreted over an 
input/output state-state pairing. The model encodes three 
kinds of representations: (i) predicative content of a frame; 
(ii) programs that move from frame to frame; and tests that 
must be satisfied for a program to apply. These include: pre-
tests, while-tests, and result-tests.

In this model, there are only two primitive event types: 
states, which are simply propositions describing a snapshot 
in time; and transitions, which are pairs of states connected 
by a function that moves from the first state to the second 
state (in some ways similar to the situation calculus rep-
resentation). These two event types are illustrated in (10).

The structure in (10a) represents a state as a snapshot of 
the world in time, ei , with the propositional content, � . The 
event structure in (10b) illustrates how the program � takes 
the world from the state in ei with content � , to the adjacent 
state, ei+1

2
 , where the propositional content has been negated, 

¬� . This structure corresponds directly to achievements. 
The other two Vendlerian classes can be generated from 
these two types:

Processes can be modeled as an iteration of simple transi-
tions, where two conditions hold: the transition is a change 
in the value of an identifiable attribute of the object; every 
iterated transition shares the same attribute being changed. 
This is illustrated in (11a).

Finally, accomplishments are built up by taking an 
underlying process event, e:p, denoting some change in an 
object’s attribute, and synchronizing it with an achievement 
(simple transition): that is, e:p is unfolding while � is true, 
until one last step of the program � makes it such that ¬� is 
now true. This can be seen in the event structure in (11b).

The advantage of adopting a dynamic interpretation of 
events is that one can map linguistic expressions directly into 
simulations through an operational semantics [66].

Models of processes using updating typically make ref-
erence to the notion of a state transition [43]. Each event, 
such as put in (13), can be seen as a traced structure over 
a Labeled Transition System. The approach is similar in 
many respects to that developed in [30], and is integrated 

(10)
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into the framework of Type Theory with Records (TTR) 
[19] for modeling robot action control and communication 
[26].6

This approach allows the system to reason about objects and 
actions independently. In the case of unspecified objects, 
VoxSim’s parameter assignment requirement can be satis-
fied by a “transform object” that has no geometry but can be 
tracked by position and rotation, resulting in a pantomime, 
(or “simulation”) of the action within the simulation. When 
simulating the objects alone, the simulation presents how the 
objects change in the world. By removing the objects and 
presenting only the actions that the viewer would interpret 
as causing the intended object motion, the system presents 
a “decoupled” interpretation of the action, for example, as 
an animated gesture that traces the intended path of motion. 
By composing the two, it demonstrates a particular instantia-
tion of the complete event. This allows an embodied situated 
simulation approach to easily compose objects with actions 
by directly interpreting at runtime how the two interact.

For the simulation to run, all parameters (e.g., object 
location, agent motion, etc.) must have values assigned. The 
simulation environment itself facilitates the calculation of 
these values, including a common path that the object and 
agent’s manipulator must follow while completing an action; 
adhering to these common paths and positional values keeps 
the two synchronized.

(11)

(12)

The logic of event structure encodes minimal temporal con-
straints on how the subevents interact or play out. The ren-
dering engine itself maintains a floating frame rate and regu-
lates the time needed to conduct movements, obviating the 
need to regularly model this temporal aspect in operationally 
defined events in VoxML, although scalar attributives like 
faster or slower can provide temporal modifiers.

VoxML aims to be as generic as possible, while also rely-
ing on various mechanisms for their respective strengths, 
like the simulated environment or spatial calculi, to specify 
what may be underspecified, as is discussed subsequently.

5 � VoxWorld: An Embodied Interaction 
Platform

Our platform built on the expressive capabilities of VoxML 
is VoxWorld. VoxWorld supports embodied HCI wherein 
artificial agents consume different sensor inputs for aware-
ness of not only their own virtual space but also the sur-
rounding physical space. It brings together three definitions 
of simulation from computer science and cognitive science: 

1.	 In computational simulation modeling, variables are set 
in a model and it is run to discover the consequences of 
possible computable configurations. Examples include 
models of climate change, structural engineering, bio-
logical pathways, etc.

2.	 Situated embodied simulations provide embodiment 
via a dynamic point-of-view. These are used in training 
simulators (e.g., combat or flight simulation), and video 
games.

3.	 Craik [22] and Johnson-Laird [45] develop embodied 
theory of mind, wherein agents carry a mental model of 
external reality in their heads. Simulation Theory in phi-
losophy of mind focuses on the role of “mind reading” 
in modeling the representations and communications of 
other agents (e.g., [38, 39]). The goal here is semantic 
interpretation of an expression by means of a simulation, 
which is either mental [11, 28] or interpreted graphs 
such as Petri Nets [29, 69].

Events  as Programs:

(13)

6  TTR encodes actions (such as put and grasp above) as finite-state 
sequences of subevents (cf. [72]), but the computational effect of 
applying the updating functions over the current RobotState, given an 
action, are similar to our interpretation of events as state-transform-
ers; e.g., mapping from RobotState to RobotState.
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VoxWorld brings together the model testing of (1), the situ-
ated embodiment of (2), and the modeling machinery of (3). 
There may be a large space of specific operationalizations 
that satisfy a given action label. The specifics may depend on 
the objects involved, and may contain many underspecified 
variable values (e.g., speed of motion, exact path—depend-
ing on the verb, etc.). The embodied demonstration of action 
thereby demonstrates the computational interpretation of it.

At the center of VoxWorld is VoxSim [54], a visual three-
dimensional event simulator built on the Unity game engine. 
VoxSim contains native natural language processing capa-
bilities, VoxML encodings and GL knowledge as interpreted 
through the multimodal semantics, and some built-in 3rd-
party libraries, e.g., QSRLib [33]. VoxML representations 
are qualitative in nature, and are grounded to “primitives” 
in 3D space, such as calculated locations, or sequences of 
move_to and turn_to actions. These interpretations are made 
at runtime using a C# VoxML interpreter, and the resultant 
grounded actions and locations are specific enough to be 
passed to the animation engine or robotic actuators.7

VoxWorld extends VoxSim with connections to arbitrary 
3rd-party endpoints; these are usually external sensors or 
services like speech recognition or vision clients, but can 
be other platforms like the open-source Robot Operating 
System, ROS. Developers can therefore use VoxWorld to 
design and build artificial agent behaviors using these inputs.

The interactive avatar Diana is an output interface that 
can also include 3rd-party endpoints; in the case of Diana, 
this is custom gesture and affect recognition [68].

Diana can speak, gesture, track, move, and emote [56, 68]. 
She is connected to depth sensors running custom gesture 
recognition and commercial affect recognition software [65], 
as well as speech recognition via Google Cloud ASR. These 
inputs let her sense the physical world around her, including 
the user and how they move. Diana knows when the user is 
attending to her, as opposed to doing something else, she can 
observe the user’s emotions, and most importantly she can 
understand both the user’s speech and gestures. As a result, 
visual communication joins verbal communication as a two-
way process, wherein the artificial agent and the human sense 
and can communicate with each other similarly.

The architecture of Diana as implemented in VoxWorld 
system is shown in Fig. 4.

The user, of course, can see Diana act within the VoxSim 
virtual environment. Such shared perception is a critical com-
ponent of human communication. When people work together 
on a physical task, they can each perceive what the others are 
doing and do not have to describe all their actions. The technol-
ogy exists to create visual simulations while it is not yet at the 
requisite level to create simulations for all other senses yet.8 
Thus, when Diana moves a (virtual) block, she does not have to 

tell the user she’s doing it; the user can see it happening. This 
simplifies communication. It also enables visually-grounded 
reasoning, where the feasibility of actions is determined by the 
visualization/simulation of the action in the 3D environment 
perceived by both human and artificial agent. The human can 
see what actions Diana may take in the current situation and 
direct their instructions that way. If the human tells Diana to do 
something impossible, say, interact with a nonexistent object 
or put an object at an impossible location, Diana can survey 
the environment, determine the infeasible command and its 
nature, and communicate this back to the user, e.g., “there is 
no pink block here,” or “I can’t do that, the purple block is in 
the way.” Some of Diana’s utterances, such as “OK” when she 
successfully interprets an input, simply make communication 
more natural. These orthogonal elements such as dialogue poli-
cies help smooth the interaction. Diana must respond in some 
way to make her behavior seem natural, as has been uncovered 
through user studies on the Diana system.

Diana is therefore more than an embodied conversational 
agent. She combines self-embodiment with perception of 
human embodiment to create a two-way conversational and 
visual agent. By being situated in a visualized world, she and 
the user also share perception. The combination results in an 
interface that feels qualitatively new. Even though the user 
knows that Diana is an artificial agent and her avatar need 
not be particularly life-like, she has enough capabilities to 
establish a conceit of peer-to-peer interaction.

As Diana appears on a screen, her embodiment and the 
human’s are partially grounded in different worlds. Thus 
humans adopt slightly different conventions with her than 
with each other in a shared environment. For example, the 
elicitation study from which Diana’s gesture recognizers 
were developed found that humans interacting with each 
other would point to objects and surfaces in their own envi-
ronment [99], while we later found that users interacting 
with Diana pointed at the screen she was displayed on [55].

Fig. 4   VoxWorld Architecture schematic for Diana

8  Shared aural perception is possible, while haptic technology is rap-
idly advancing. We expect that much of the semantics presented here 
would be suitable for modeling extra-visual shared perception. This is 
the topic of ongoing research, beginning with haptics in VR.7  VoxSim source can be found here.

https://github.com/VoxML/VoxSim


KI - Künstliche Intelligenz	

1 3

The current implementation of Diana provides scenes in 
a Blocks World domain, as well as scenes augmented with 
a set of more complex everyday objects (e.g., cups, plates, 
books, etc.). We will revisit embodied human computer 
interaction with Diana later in this paper.

VoxWorld itself can be used to create other types of artifi-
cial agent behaviors, including interactions without an avatar 
where the user can direct the computer to manipulate objects 
in space (Fig. 5), interaction with visualized data, or real 
robots (see Sect. 11).

Situational embodiment takes place in real time, so in the 
case of a situation where there may be too many variables to 
predict the state of the world at time t from a set of initial con-
ditions at time 0, after the simulation has been running for an 
abitrary number of timesteps, situational embodiment allows 
the artificial agent to reason forward about the consequences 
of specific actions that may be taken at time t, given the agent’s 
current conditions and surroundings. Situatedness and embodi-
ment is required to arrive at a complete, tractable interpretation 
given any element of non-determinism. For example, an arti-
ficial agent trying to navigate a maze could easily do so with a 
map that provides complete, or at least sufficient, information 
about the scenario. If, however, the scene includes a disruptor 
(e.g., the floor crumbles, or doors open and shut randomly), the 
artificial agent would be unable to plot a course to the goal. It 
would have to start moving, assess the current circumstances 

at every timestep, and choose the next move or next set of n 
moves based on them. Situated embodiment allows the artifi-
cial agent to assess the next move based on the current set of 
relations between itself and the environment (e.g., ability to 
move forward but not leftward at the current state). This pro-
vides for reasoning that not only saves computational resources 
but performs more analogously to human reasoning than non-
situated, non-embodied methods.

6 � Embodiment within the Common Ground

The theory of common ground has a rich and diverse lit-
erature concerning what is shared or presupposed in human 
communication [2, 17, 37, 88, 91]. With the presence of 
a common ground during shared experiences, embodied 
communication assumes agents can understand one another 
in a shared context, through the use of co-situational and 
co-perceptual anchors, and a means for identifying such 
anchors, such as gesture, gaze, intonation, and language. In 
this section, we develop a computational model of common 
ground for multimodal communication.

We assume generally a model of discourse semantics as 
proposed in [4], as it facilitates the adoption of a contin-
uation-based semantics for our phrase-level compositional 
semantics [9], as well for discourse, as outlined in [5] and 
[23]. For the present discussion, however, we will not refer 
to Segmented Discourse Representation Theory (SDRT) 
representations, but focus instead on the semantics of inte-
grated multimodal expressions in the context of task ori-
ented dialogue, as presented first in [75] and extended here.

Here, we introduce the common ground structure (CGS), 
the information associated with a state in a dialogue or dis-
course. We model this as a state monad [93], as in (14):

This monad corresponds to computations that read and 
modify a state in the discourse. �� specifies the type of 
those programs which return �-typed values. These values 
correspond to the following elements in the dialogue state:

(14)State Monad ∶ �� = State → (� × State)

(15)

a. The communicative act,C
a
, performed by an agent, a ∶

a tuple of expressions from the diverse modalities involved. Broadly, this includes

the modalities of a linguistic utterance, S(speech), gesture,G, facial expression,

F, gaze,Z, and an explicit action,A.

C
a
= ⟨S,G,F, Z,A⟩.For our present discussion, we restrict this to a linguistic utterance,

S(speech) and a gesture,G.There are hence three possible configurations in performing a

C ∶ C
a
= {(G), (S), (S,G)}

b. � ∶ The agents engaged in communication;

c. � ∶ The salient shared belief space;

d. � ∶ The objects and relations that are jointly perceived in the environment;

e. E ∶ The embedding space that both agents occupy in the communication.

Fig. 5   Situated pseudo-embodied HCI
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Given these attributes, we initialize the common ground for 
the dialogue based on shared beliefs and dynamic perceptual 
content for each of the agents. To appreciate the role that 
the common ground structure plays in creating an embodied 
interpretation of a communicative expression, let us consider 
how linguistic expressions are typically interpreted relative 
to a discourse. The conventional semantic interpretation of 
a linguistic expression, S, is computed relative to a model, 
M , and the relevant assignment functions, e.g., g: that is, 
[[S]]M,g . For example, “A blue block is on the table.” will 
have an interpretation, [[.]] , relative to our model specified, 
which will have the relevant discourse elements, e.g., blocks, 
a table, the agents present, etc. This will typically be accom-
panied by dynamic updating operations to enable discourse 
level anaphoric binding of linguistic expressions introduced 
over multiple sentences in the dialogue [5, 23, 24, 42, 46]. 
For example, in the dialogue below, there is a natural coref-
erence between the linguistic antecedent the blue block and 
the pronoun in the subsequent sentence, it.

Following [5, 23] and further developments in [96], we 
represent a context as a stack of items and the type of left 
contexts to be lists of entities, [e]. Right contexts will be 
interpreted as continuations: a discourse that requires a left 
context to yield a truth value. The type of a right context 
is therefore [e] → t . Hence, context transitions get the type 
[e] → [e] → t ; they are characteristic functions of binary 
relations on contexts; the type for an utterance would be, 
[e] → ([e] → t) → t.

The information state is updated in the dialogue through 
continuation-passing, as in [5]. We apply a continuation-
passing style (CPS) transformation to arrive at the con-
tinuized type for each expression, notated as an overlined 
expression [96]. Given the current discourse, D, and the new 
utterance, S, S integrates into D as follows:

This states that the current discourse has two arguments, its 
left context i (where we are), and what is expected later in 
the discourse, k. The anaphoric pronoun (it) in Dialogue 1 
above in the second sentence is interpreted relative to the 
introduction of the linguistic expression (a blue block) in the 
previous sentence, and as a result, it has a logical antecedent 
that it can refer to. The first sentence is the context within 
which the second is interpreted, resulting in the pronoun it 
taking a blue block as its antecedent.

(16)[[(�.�)]]M,cg = �i�k.[[�]]i(�i�.[[�]]i�k)

While this is a dynamic interpretation of the linguistic 
expression, it does not capture the interpretation of other 
modalities in the communication that convey denotative 
information (such as gesture), and it fails to provide a situ-
ated grounding for the expressions within the dialogue state 
of the current context. This dialogue state is the CGS men-
tioned above. By treating the common ground as a state 
monad, we can continuize the composition above the level 
of the sentence as well. We will extend the analysis of con-
tinuation passing for linguistic expressions to multimodal 
processing, as it allows for an informational distribution 
among the expressions from different modalities being used 
in composition to form larger meanings.

The CGS can be represented as in (17), where an agent, 
ai , makes a communicative act through either gesture, as in 
(17a), or linguistically, as in (17b).9

(17a) specifies that two agents, a1 and a2 , co-inhabiting an 
embedding space, E, within which the experience is embod-
ied, share a set of beliefs, � , where they can both see the 
object, b. Given this representation, the gesture is now situ-
ated to refer to objects and knowledge within the CG struc-
ture. In (17b), the linguistic expression, Sa1

 , is grounded 
relative to the parameters of common ground, where the 
indexical you will denote the agent, a2 , and the pronoun it 
will denote the object, b.

To account for an interpretation that enables situated 
meaning in context, we introduce a simulation within which 
communicative expressions are interpreted. We define this 
simulation, S , as a triple, ⟨M, E, CG⟩ , consisting of a con-
ventional model, M , an embedding space, E , together with a 
common ground structure, CG . This definiton brings together 
the three types of simulation discussed in Sect. 5.

Hence, we will refer to an interpretation of an expression, 
� , within a simulation, as [[�]]S . For example, the CGS in 
(17b) provides a situated grounding for the linguistic expres-
sion, “You see it”:10

(17)

(18)[[see(you, it)]]S,g = see(a2, b)

9  This is similar in many respects to the representations introduced in 
[20, 27] and [37] for modeling action and control with robots.
10  The theory of semiotic schemas introduced in [83] attempts to 
encode the perceptual context of a linguistic utterance as well, to 
resolve reference.
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However, in order to appreciate the interpretation of gesture 
(as in (17a)), multimodal expressions, and action within a 
simulation model, it is necessary to understand: (a) how dif-
ferent actions are embodied; and (b) how gestures denote in 
the common ground. We turn to these questions in the next 
two sections.

7 � Agent Capabilities Determined 
by Embodiment

Agent embodiment is defined relative to the actions that can 
be performed by the agent. What this means is that, while 
an agent can have a disembodied semantics for many pos-
sible actions, it can have an embodied interpretation for only 
those actions it can execute, in principle. We make a basic 
distinction between actions that are executable/not execut-
able by the agent, and those actions that are afforded by the 
environment and the situation.

Consider the two artificial agents discussed below in 
Sects. 10 and 11 , Diana, the interactive avatar, and Kirby 
the robot. Diana has a humanoid upper body frame and rig-
ging, including legs but legs that do not move. She has two 
arms and hands and is able to grasp, reach, flex, push, slide, 
roll, flip, and stack. She has a humanoid head, with a syn-
thetic vision sensor located above her nose (reading from 
the Kinect camera). She can turn her head but not her torso. 
Hence, we define these as the modally executable actions 
available to Diana. Kirby, a mobile robot with wheels, a 
camera, and a LIDAR, but no graspers, has a different set 
of modally executable actions, e.g., go-to, find, move, turn.

Given the executable actions available to an agent, this 
determines the subsequent range of other computations, 
including affordances. But affordable actions are only active 
when the appropriate object is situated in the environment. 
For example, a block or a cup can be grasped, picked up, and 
moved. Hence, these modally executable actions are only 
possible when the object is present.

Now consider how these actions are actually executed by 
the artificial agent. All of these are actions that are embodied 
primarily in the hand (grasper), and by extension (transitiv-
ity), in the attached local rig (the arm), and the attached 
torso. Hence, there is a complete action path for the embod-
ied semantics associated with these actions. This has the 
consequence of forcing a modeling of forward kinematics 
(FK) and inverse kinematics (IK) for the artificial agent11, 

when interpreting expressions entailing such actions. For 
example, “grab the blue block” presupposes the appropriate 
proximity to reaching the block, and this may entail moving 
towards the block. Hence, the embodied semantics for grab 
must include the IK required to perform the basic action.

We adopt the notion of component, as used in type-
based ontologies and semantic resources, where the com-
ponent object relation exhibits transitivity: i.e., if A ⊑c B 
and B ⊑c C , then A ⊑c C [76, 102]. For Diana, we define 
hand ⊑c arm , and arm ⊑c torso , hence hand ⊑c torso.

Given these observations, we see that the semantics 
encoded in the VoxML representations for objects and 
actions enables a more embodied interpretation for the entity 
in question. That is, hand is typed as a grasper instrument, 
encoded as a Gibsonian affordance action (cf. Sect. 4.1).

Similar remarks on embodied semantics hold for Kirby, 
but relative to a different set of modally executable 
actions. For instance Kirby’s wheels allow him to move, 
such that when a destination is supplied, the wheels, as a 
component of the chassis and the entire robot as a whole 
( wheels ⊑c chassis ⊑c self → wheels ⊑c self  ) execute the 
act of locomotion until the robot (self) evaluates its location 
to be the target.

8 � Modeling the Semantics of Gesture

As mentioned in Sect.  6, a conversation between two 
agents assumes a common ground, within which we cre-
ate situated groundings for the communicative expressions 
used and the actions being performed. Here we introduce 
a dynamic interpretation for gesture that explicitly ref-
erences the common ground structure in discourse. We 
extend the approach taken in [47] and [60], where gestures 
are simple schemas consisting of distinct sub-gestural 
phases, where Stroke is the content-bearing phase of the 
gesture.

In the context of multimodal dialogues and interactions 
with artificial agents, a gesture’s Stroke will denote a range 
of primitive action types, ACT  , e.g., grasp, pick up, move, 

(19)
[[grab it]]S,g = grab(a2, b)

= ∃x, y, z[grab(x, b) ∧ hand(x) ∧ arm(y)

= ∧ ⊑c (x, y) ∧ torso(z)∧ ⊑c (y, z)]

(20)
[[go there]]S,g = go_to(a2, b)

= ∃x, y, z[go_to(x, b) ∧ wheels(x) ∧ chassis(y)

= ∧ ⊑c (x, y) ∧ self (z)∧ ⊑c (y, z)]

(21)G → (Prep) (Pre_stroke Hold) ������ Retract

11  Forward kinematics computes the position of the end-effector from 
the joint parameters. Inverse kinematics computes the joint param-
eters from the position of the effector.
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throw, pull, push, separate, and put together. There are many 
ways to convey intent to carry out these actions, but they 
all involve two characteristics: (a) the action’s object is an 
embodied reference in the common ground; and (b) the ges-
ture sequence must be interpreted dynamically, to correctly 
compute the end state of the event. To this end, we model 
two kinds of gestures in our dialogues: (a) establishing a 
reference; and (b) depicting an action-object pair.

We introduce the notion of an interpreted gesture tree in 
(23a), which indicates that the gesture Dobj functionally con-
sists of a deictic orientation, Dir, with the demonstratum, 
d, and the referenced or denoting entity, Obj, denoting b1.

As gesture is intended for visual interpretation, it is directly 
interpretable by the artificial agents in the context if and only 
if the value is clearly evident in the common ground, most 
likely through visual inspection. Directional or orientational 
information conveyed in a gesture identifies a distinct object 
or area of the embedding space, E, by directing attention to 
the End of the designated pointing ray (or cone) trace [60, 
61, 75].

We model the interpretation function, [[.]] , as fully deter-
mining the value of the deixis in the context, supplied by 
the common ground, which we discuss below. In (23b), the 
action gesture type, GAf  , consists of an action-object pairing, 
where the action, a, is applied to the object, b1 , in some pro-
totypical manner. The available gesture sequence strategies 
(or “gesture phrases,” GPs) are outlined in (25–27).

(22)
a. ������ ∶ Dobj → Dir Obj

b. ������ ∶ GAf → Act Obj

(23)

(24)[[�obj]] = [[End(ray(�))]]

(25)
a. action − object ∶ e.g., grab [������]

b. GP1 → GAf Dobj (Action Focus)

→ Dobj GAf (Object Focus)

(26)

a. action − result ∶ e.g., put [������]at [��������]

b. GP2 → GAf Dobj Dloc (Action Focus)

→ Dobj GAf Dloc (Object Focus)

→ Dobj Dloc GAf (Transition Focus)

(27)
a. action − result ∶ e.g.,move [������] [���������]

b. GP3 → GAf Dobj Ddir

As mentioned above, the deictic gesture in (22a) and (23a) 
actually serves to indicate both a location and objects within 
that location, suggesting that deixis denotes a dot object, 
viz., physobj ∙ location [6, 73]. Either of these type com-
ponents may be exploited by the deictic reference, which is 
then interpreted in context, either as a selection (exploiting 
the physobj) or as a destination (exploiting either). For exam-
ple, should an object b1 already be selected through a deixis 
da , as in (23a), a subsequent deixis db may be interpreted as 
selecting a destination location in isolation (in which case 
the interpretation exploits the location of db ), or as selecting 
a location relative to another object (exploiting the physobj 
type of db ). We discuss this further below.

When content-bearing gestures are generated as a 
sequence, as discussed above, they can assume a continua-
tion semantics similar to that used within a linguistic expres-
sion. The continuized semantics for gesture phrases is in 
(28).12,13, 14,15

As before, since the common ground is modeled as a state 
monad, we can continuize the sequence of gestures in the 
dialogue accordingly. We apply a CPS transformation to 
arrive at the continuized type for each expression, notated 
as an overlined expression [96]. Given the current gesture 
discourse, D, and a new gesture, C, we take the integration 
of C into D as follows:

Given a description of the gesture grammar as used in 
our multimodal dialogues, let us explore a communicative 
act that exploits a combination of both speech and gesture, 
(S, G). We identify three configurations for how a language-
gesture ensemble can be interpreted, depending on which 
modality carries the majority of semantic content: (a) 

(28)

a. �G → (��) ��

b. ��1 → �af �Obj

c. ��2 → �af �Obj�Loc

d. ��3 → �af �Obj�Dir

(29)[[(�.�)]]M,cg = �k.[[�]](�n.[[�]](�m.k(m n)))

12  [[S]] = ([[��]][[��]]).
13  [[��1]] = �j.([[�Obj]];�j

�.(([[�af ]]j
�)j)).

14  [[��2]] = �k.([[�Loc]];�j.([[�Obj]];�j
�.(([[�af ]]j

�)j)k)).
15  [[��3]] = �k.([[�Dir]];�j.([[�Obj]];�j

�.(([[�af ]]j
�)j)k)).
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language with co-speech gesture, where language conveys 
the bulk of the propositional content and gesture adds situ-
ated grounding, affect, effect, and presuppositional force [13, 
59, 86]; (b) co-gestural speech, where gesture plays this role 
[75]; and (c) a truly mixed-modality expression, where both 
language and gesture contribute equally to the meaning. In 
practice, while many of the interactions in our dialogues 
have this property, the discourse narrative is broadly guided 
by gesture. For this reason, we model the multimodal inter-
actions as content-bearing gesture with co-gestural speech.

Language and gesture are considered separate modal 
channels, but they operate interdependently. Deictic ges-
ture acts like a demonstrative in a referring expression, 
and embodied gesture, when enacted, becomes part of the 
embedding space. The embodied artificial agent can inter-
pret and generate expressions like “this/that block,” accom-
panied by deixis, and can do the same when referring to 
the embodiment of its interlocutor (e.g., “my/your arm”). 
While agents in the interaction are considered separately 
from objects in the model, the GL and VoxML typing of 
embodied agents (e.g., human ∙ physobj) show they they 
have properties of physical objects (e.g., a convex hull, an 
interaction with the physics of the world, etc.), and so can 
be discussed in similar terms.

In our theory, a multimodal communicative act, C, con-
sists of a sequence of gesture-language ensembles, (gi, si) , 
where an ensemble is temporally aligned in the common 
ground. Let us assume that a linguistic subexpression, s, is 
either a word or full phrase in the utterance, while a gesture, 
g, comports with the gesture grammar described above.

We assume an aligned language-gesture syntactic structure, 
for which we provide a continuized semantic interpreta-
tion. Both of these are contained in the common ground 
state monad introduced above in (15). For each temporally 
indexed and aligned gesture-speech pair, (g, s), we have a 
continuized interpretation, as shown below. Each modal 
expresssion carries a continuation, kg or ks , and we denote 
the alignment of these two continuations as ks ⊗ kg , seen 
in (31).

Each of these modalities will contribute information if it 
is present. We bind co-gestural speech to specific gestures 
in the communicative act, within a common ground, CGS. 
A dashed line in an ensemble expression indicates that a 

(30)
�� − �������� �������������� ∶

[
G g1 … gi … gn
S s1 … si … sn

]

(31)

𝜆ks.ks([[�]])

𝜆kg.kg([[�]])

𝜆ks ⊗ kg.ks ⊗ kg([[(�, �)]])

co-gestural speech element, S , is aligned with a particular 
gesture, G . For example, the CG structure for this expression,

Given the theory of two-level affordances proposed here 
(Gibsonian and Telic), we can naturally think of objects as 
antecedents to the actions performable on them. For exam-
ple, for each object in (33), we can identify the attached 
behaviors.

This naturally suggests that affordances are a subclass of 
continuations. For example, both [[cup]] and [[block]] have 
similar Gibsonian affordance values, but quite distinct Telic 
affordance values. This can be distinguished by the nature 
of their respective Telic continuation sets as follows, where 
sel is a function that selects a suitable discourse antecedent 
inside the continuation set [5]:

This is the subject of ongoing research within our studies.

9 � Tracking Beliefs and Perception in Context

Common ground updates will also include executing modal 
operations over the belief space B, where each new element 
from the discourse is introduced via a public announcement 
logic (PAL) formula, and each new perceived object or rela-
tion is introduced into P via an analogous public percep-
tion logic (PPL) formula [71, 94, 95]. We will use [�]� to 
denote that an agent “ � knows � ”. Public announcements are 
implemented as: [!�1]�2 . Any proposition, � , in the com-
mon knowledge held by two agents, � and � , is computed as: 
[(� ∪ �)∗]� . Agent knowledge is encoded as sets of acces-
sibility relations between situations.

This model allows us to distinguish information in the 
common ground that is shared by the agents from new asser-
tions accompanying a request or command in a dialogue. 

(32)

�
G DObj Grabg
S that ___

�

, is shown in (32).

[[⟨that,�Obj⟩.⟨ ,����⟩]]

= 𝜆ks ⊗ kg.([[�Obj]];𝜆jg.(([[����]]jg)ks ⊗ kg))

(33)
a. ����� ∶ Pick me up!, Move me!

b. ��� ∶ Pick me up!, Drink what’s in me!

c. ����� ∶ Pick me up!, Cut that with me!

(34)

a. 𝜆kGib ⊗ kTelic.kGib ⊗ kTelic(cup) ∶

grab ⊆ ��� kGib,

drink ⊆ ��� kTelic,

b. 𝜆kGib ⊗ kTelic.kGib ⊗ kTelic(block) ∶

grab ⊆ ��� kGib,

pick_up ⊆ ��� kGib,

move ⊆ ��� kGib.
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This is called “assertion in the common ground”, and can 
be stated as follows: [(� ∪ �)∗]�p ∧ � . This says that agents 
� and � share the information �p , and the common ground 
is updated with the new information �.

In a similar fashion, an agent’s perception is encoded as 
sets of accessibility relations, � , between situations. What 
is seen in a situation is encoded as either a proposition, � , 
or existential statement of an object x, x̂ . [�]�� denotes that 
agent “ � perceives that � ”. [𝛼]𝜎 x̂ denotes that agent “ � per-
ceives that there is an x.” Some expressions of co-perception 
in the common ground include:16,17, 18,19

Objects and events are realized in terms of their local-
ized embedding space E , so gazing at “the same” entity is 
considered to be gazing toward points within the same E.

Currently, the update functions in the model described 
here, for both perception (from action or directly perceived 
acts) and for beliefs (from public announcements and the 
result of perception), are largely non-probabilistic in nature, 
unlike that outlined in [26]. This is due in part to our focus 
on creating a general architecture for multimodal embodi-
ment. It is clear, however, that both perceptually-derived cat-
egorization of the environment and the general (un)certainty 
of an agent’s belief will be probabilistically determined, as 

(35)

a. In order to co-attend, two agents direct gaze towards an object , xi, or event ei;

b. Each agent sees the other attend;

c. Each agent sees that the other sees her attend;

d. The co-perception for � and � includes � (��Everyonecanseethat�.��).

well as dynamically updated, as also argued in [7, 41, 81, 
92]. This would involve constructing user models for distinct 

interlocutors, which we anticipate building in VoxWorld 
(Figs. 6, 7, 8).

Fig. 6   Common-ground structure for “that” (ensemble) + “grab” 
(speech) (equivalent to (32))

Fig. 7   Common-ground structure for “that red block in front of the 
knife” (cf. Fig. 8). The semantics of the RE includes a continuation 
for each modality, ks and kg , which applies over the object in subse-
quent moves in the dialogue

Fig. 8   Agent Points to Block in Common Ground

16  [�]�(xi ∨ ei) , [�]�(xi ∨ ei).
17  [�]�([�]�(xi ∨ ei)) , [�]�([�]�(xi ∨ ei)).
18  [�]�([�]�([�]�(xi ∨ ei))) , [�]�([�]�([�]�(xi ∨ ei))).
19  [(� ∪ �)∗]��.
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10 � Demonstrations of Embodied Common 
Ground

10.1 � Undoing Actions

Semantically, undoing an action is fundamentally unbinding 
and correcting parameters of the action. Assuming a generic 
semantics as in (36), the human may initially indicate (37) 
and instruct Diana to place the purple block on the yellow 
block. However, should they decide that this is not actually 
correct, they can use the correction as in (38), which treats 
“on the white one” as replacement content, while keeping 
the remainder of the semantic content the same. This undoes 
the action in progress, rewinds the state monad and performs 
a reassignment with the replacement content. The result is 
that Diana puts the purple block on the white block instead.

Depending on the exact nature of the replacement content, 
the resulting action may differ. In (38) the replacement con-
tent is a prepositional phrase, and so it is the destination 
that is reassigned. If the human had said “wait, the white 
one,” instead then the subject of the action would have been 
reassigned after rewinding the state monad. The result here 
would have been Diana putting down the purple block and 
putting the white one on the yellow block.

Where corrected references are available for anaphora 
(e.g., shifting antecedents of third-person pronouns, cf. 
[40]), it (looking for a physobj) would remain resolved to 
the object, while she (looking for an agent) would resolve 

(36)�k.C1(�n.C2(�m.k(m n)))

(37)

a. 𝜆kGib
⨂

kTelic.kGib
⨂

kTelic(block)

b. grab ⊆ ��� kGib
c. put ⊆ ��� kGib
d. 𝜆k.k(put) ⟹ M, cg1 ⊧ on(yellow, purple)

(38)

a. ��Wait, onthewhiteone.��

b. ���� k = 𝜆k.k(put)

c. ������ the state monad and �������� ∶

d. 𝜆kGib
⨂

kTelic.kGib
⨂

kTelic(block)

e. put ⊆ ��� kGib
f. 𝜆k.k(put) ⟹

g. M, cg1 ⊧ on(yellow,white)

to Diana. However, if the language was one like Bengali 
or Turkish, without gendered 3rd-person singular pro-
nouns, additional language processing techniques would be 
required.

10.2 � Aligning Gesture and Language

Figure 9 illustrates an embodied HCI, where deixis (point-
ing) and action-affordance gestures from the human are situ-
ated in an embodied space shared by both the IVA and the 
human. These are accompanied by aligned co-gestural lan-
guage expressions, such as “that one”, “the purple one”, etc.

To show how continuations help interpretation of gesture 
sequences, consider a single modality gesture imperative.

Through its own continuation, the referent identified in 
the first deixis, �Obj , is passed to the action ( �k.k([[����]]) ), 
while the continuized interpretation of the action delays the 
computation of its argument until the appropriate binding 
has been identified. Finally, the goal location for the move-
ment selected for by the move gesture is identified through 
the action of the continuized location deixis, �Loc . This is 
illustrated in (40), along with the common ground structure 
that is computed, shown in (39).20

Fig. 9   Embodied interaction 
with language and gesture

Fig. 10   Diana interacts with an unknown object through recognizing 
its affordances. The human points to the cup and says “What is that?” 
to which Diana replies, “That’s a cup.” When the human indicates the 
bottle, Diana says, “I don't know what it’s called, but I can grasp it 
like a cup”

20  A video demo can be viewed here http://​www.​voxic​on.​net/​wp-​
conte​nt/​uploa​ds/​2020/​07/​DARPA-​CwC-​Brand​eis-​CSU-​July-​2020.​
mp4.

http://www.voxicon.net/wp-content/uploads/2020/07/DARPA-CwC-Brandeis-CSU-July-2020.mp4
http://www.voxicon.net/wp-content/uploads/2020/07/DARPA-CwC-Brandeis-CSU-July-2020.mp4
http://www.voxicon.net/wp-content/uploads/2020/07/DARPA-CwC-Brandeis-CSU-July-2020.mp4
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10.3 � Transferring Object Properties using 
Affordances

Because Diana is embodied and situated within an embod-
ied HCI environment, this facilitates transfer learning of 
object affordances between objects, as illustrated in Fig. 10. 
For this configuration, we assume that Diana has no seman-
tics for the object we recognize as a bottle. In embodied 
interaction with the human, Diana is able to observe certain 
similarities in the shape and habitats of [[cup]] and [[bot-
tle]] (e.g., current upright orientation, similar symmetry 
and size constraints), and infer that they might share some 
behaviors, which leads her to infer that a way to grasp the 
bottle would be like she grasps the cup. The close asso-
ciation between habitats and affordances and the struc-
tured encoding provided by VoxML allows us to perform 
this kind of transfer learning by inferring a likely missing 
behavior given a novel object and an encoding of its current 
configuration.

Given that similar habitats serve as necessary (but not, in 
isolation, sufficient) preconditions to certain behaviors (e.g., 
in order to be rolled, an apple, a cup, and a bottle must all 
be turned on their sides), the ability to assess an unknown 
object relative to known ones allows an artificial agent to 
computationally transfer properties of known objects to 
unknown ones, in a way that gives it a handle on interacting 
with and discussing a novel object.

Our method involves training 200-dimensional embed-
dings over 22 VoxML habitat and affordance encodings 
using a Skip-Gram method. Objects are represented as aver-
aged habitat or affordance vectors, which are fed into two 
models, a 7-layer MLP and a 4-layer (1D) CNN. Given an 
object representation and a desired behavior, the models pick 
the known object most similar to an unlabeled embedding 
vector with respect to the desired behavior. For example, an 
affordance vector representing a plate was predicted to be 
similar to a cup or bottle due to its containment affordance.

(39)

(40)
[[�Obj.����.�Loc]]

= �k.([[�Loc]];�j.([[�Obj]];�j
�.(([[����]]j�)j)k))

Diana observes similarities in the habitats of the cup and 
the bottle (e.g., upright orientation, similar symmetry and 
size constraints), and infers they may share behaviors, which 
leads her to grasp the bottle like the cup. Links between 
habitats and affordances in VoxML allows us to infer similar 
objects and behaviors in the current situation.

Putting a formal representation in distributional space 
is a hard problem, central to neurosymbolic AI, for which 
VoxWorld is well-suited. We rely on the representation of 
affordances as a habitat H in which an event [E] leads to a 
result R (e.g., see (8)). This vocabulary of affordances is 
vectorized like words: by turning coocurrence of habitats 
and affordances into a distributional representation.

To learn about novel events, the same principles could be 
applied to different (e.g., sequential) models, such as LSTMs 
instead of CNNs. Transitions may likely be handled simi-
larly; this is in need of empirical exploration.

11 � Embodied HCI and Robot Control

We are exploring an additional application of embodied HCI 
in the context of communication and control of a mobile 
robot. Specifically, we have used VoxWorld for navigation in 

Fig. 11   Communicating with a mobile robot. In this figure, the robot 
itself is a simulated robot running in the ROS Gazebo simulator envi-
ronment

Fig. 12   Communicating with a mobile robot. This figure features a 
real robot navigating through a real environment
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novel environments using coordinated gesture and language. 
A human partner can deliver instructions to the robot using 
spoken English and gestures relative to the simulated envi-
ronment, to guide the robot through navigation and explora-
tion tasks.

In our system, a human user and a robot (called “Kirby”) 
exist in a co-situated space that is mediated by a virtual envi-
ronment displayed on a screen, such that the human can see a 
virtual rendition of the environment the robot has explored, 
and of the robot’s current perspective view. The human can 
then gesture to objects and locations on the screen, either 
in a perspective or omniscient view, and speak about them 
in English, e.g., “go there,” “go to that wastebasket and 
turn around,” or “find the blue block.” Deictic gestures are 
grounded to coordinates on the screen which are transformed 
to equivalent coordinates in the robot’s ROS environment, 
allowing the robot to execute native navigation commands, 
e.g, go_to(x, y) . The robot can likewise communicate sta-
tus updates back to the human which are then spoken out 
through text-to-speech.

Figure 11 shows the 3D rendering of the robot’s environ-
ment from its perspective (main panel), an omniscient view 
(center left), and the visualized LIDAR data (bottom left).

The robot might hear the instruction “go here/to that 
one,” be able to see which object the user is indicating, and 
go to it. In another scenario, imagine the user is viewing the 
omniscient perspective and pointing to a different object out-
side the robot’s field of view, and gives the same instruction. 
There, the denotation of “here” or “that one” is not available 
to the robot in the common ground, because the demonstra-
tive has not been grounded to a location. The robot will have 
to ask for clarification (“I can’t see where you’re pointing”) 

or turn around to scan until it sees the location of deixis in 
order to interpret the instruction.

Figure 12 shows the VoxWorld rendering of an environ-
ment being explored by a real robot (see Fig. 13) using the 
same omniscient and perspective views, plus an additional 
view that streams the onboard camera from the robot into 
the VoxWorld view (left side, below the perspective view). 
Note how the obstacles detected by the LIDAR and rendered 
into VoxWorld as walls match real objects visible in the live 
camera stream. Because of the planar nature of the LIDAR, 
only obstacles at LIDAR-level are detected, like the cabinet, 
chair, bookshelf, and piano stand. Obstacles above LIDAR-
level, such as the desk surface, are invisible to it. In omnis-
cient view (here the main panel), we can see that the robot 
has detected other obstacles outside of the camera frame, 
such as other walls of the room. Its situationally grounded 
knowledge of these obstacles informs how it navigates. For 
instance, to execute a go forward command the robot may 
have to navigate around detected obstacles.

Figure 13 shows the real navigating robot used in this 
example. This is a GoPiGo3 robot by Dexter Industries that 
has been customized by placing a LIDAR on top, attach-
ing a high-capacity power pack, and installing a Raspberry 
Pi Camera Module v2 (8 megapixels). Object detection is 
currently accomplished using fiducial detection with mark-
ers placed on objects or instantiated in the ROS Gazebo 
simulator. Integrating real object detection using the onboard 
camera stream is the topic of ongoing research.

Here VoxWorld connects to one external sensor—the 
onboard camera—directly to stream the feed. It also con-
nects to a cross-platform robotic services bridge. This con-
sumes output either directly from the robot such as its posi-
tion and orientation, or from routines running over its sensor 
data, such as LIDAR feedback converted into line segments 
[8, 89].

12 � Embodiment, Common Ground, 
and Agent Capabilities

The capabilities of a given artificial agent are dependent on 
the particulars of its embodiment in that having or lacking 
certain effectors allow it to or disallow it from participating 
in certain behaviors. Diana has two hands and with them can 
manipulate objects. Upon entering into an interaction with 
her, the user, perceiving that she has hands, and given the 
situation in which she is placed before blocks on the table, 
typically assumes that Diana is capable of manipulating the 
blocks and will give her instructions pertaining to that task. 
The mere fact of perceiving the nature of her effectors intro-
duces an assumption into the common ground that Diana can 
manipulate the blocks somehow. Perception of the artificial 
agent’s embodiment populates the common ground with 

Fig. 13   Custom GoPiGo3
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some propositional content that can then be confirmed or 
refuted as the interaction proceeds.

In the robot control examples from Sect. 11, the live cam-
era feed serves as a kind of situated pseudo-embodiment 
discussed in Sect. 2. This moving isolated camera is not 
physically possible without the embodiment of the robot and 
the structures that support the camera, i.e., the chassis and 
the wheels that move it. In these examples we demonstrate 
two distinct kinds of embodiment—the pseudo-embodiment 
of the camera and the situated self-embodiment of the robot’s 
presence in the simulated world that is directly derived from 
real-world sensor feedback. This computational embodiment 
facilitates reasoning and the camera feed and rendering of 
the robot’s current interpretation presents that reasoning pro-
cess for the human to interact with.

Here and in Sect. 7, we have demonstrated two distinct 
kinds of interactions with two distinct types of artificial 
agents. Diana the interactive avatar exists solely in the vir-
tual world, cannot locomote, and has hands. Kirby the robot 
maintains an embodied presence in the VoxWorld virtual 
environment that is derived from sensor data coming from 
a real robot navigating through the real world. Diana can 
manipulate objects but cannot walk or move to other loca-
tions. Kirby can go to locations and find objects but cannot 
manipulate them. This in turn has a profound effect on the 
types of instructions these different artificial agents can take 
and the types of interactions they can participate in.

Figure 14 shows snippets of Diana’s and Kirby’s dia-
logue. These flowcharts show two distinctions: 

1.	 Due to the different self-embodiments of the artificial 
agents, they participate in different activities entirely. 
Diana can lift blocks while Kirby can find them.

2.	 Because of Kirby’s ability to move and explore the 
scene, which Diana lacks, Kirby begins with an assump-
tion that he does not have perfect information about the 
scene and that there may be items he hasn’t discovered 
yet.

As shown in the action/feedback pairs on the right, Kirby 
can explore the scene if he does not know of any objects 
matching what he’s looking for. Diana, assuming more com-
plete information about the scene, will state that “there is 
no ⟨COLOR⟩ block here” if she has not found and does not 
currently see one. Both sequences use the same underly-
ing semantics based on content introduced into the com-
mon ground. Differences in ability and articulation (i.e., the 
knowledge the artificial agents introduce into the common 
ground) depend on their respective embodiments.

These differences allow for testing embodiment’s effects 
with respect to language and reasoning. Diana and Kirby 
may have to solve to same problem: for example, catching 
water from a leak. Both can identify the need for a container 
y (cf. affordance embeddings in Sect. 10.3). Then, they need 
to move it to the location of the leak. They have two actions 
in their common vocabular. Having graspers, Diana can 
satisfy “grasp,” a precondition to the “move” subevent of 
both actions, so she can perform both as encoded. Kirby, 
with no graspers, cannot satisfy “grasp,” but he can reason 
about certain other subevents of [[slide]], such as moving y 
while keeping it in contact with its supporting surface sfc21. 
Where Diana could grasp and move or slide the container to 
its destination, Kirby can solve the problem through second-
order reasoning over the VoxML predicate [[slide]] by deter-
mining subevents he is capable of satisfying through other 
means, such as simply pushing the object.

13 � Conclusion

In this paper, we have discussed the role that embodiment 
of artificial agents and common ground between artifi-
cial agents and humans plays in creating rich, interactive, 

Fig. 14   Equivalent sections of Diana’s (top) and Kirby’s (bottom) 
respective dialogues, showing effects of embodiment and informa-
tion state on their respective actions and utterances. On the left is the 
action, in the center are conditions on the number of known objects 

that match the characteristics given in the instruction, and on the right 
are the actions taken and feedback given in each case. Other quanti-
fiers trigger different action and dialogue sequences based on the situ-
ated context

21  VoxML encodes relations using a number of common spatial rea-
soning calculi, including the Region Connection Calculus [82], where 
this would be encoded EC(y, sfc).
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intelligent behaviors. VoxWorld facilitates experiments with 
IVAs in embodied HCI contexts, using multiple modalities 
in diverse settings. An embodied HCI, as is enabled by Vox-
World, allows the human and artificial agent to share an 
epistemic space, and any communicative modality that can 
be expressed within that space (e.g., linguistic, visual, ges-
tural) enriches the ways a human and a computer or robot 
can communicate about objects, actions, and situated tasks.

These different task-appropriate behaviors serve to 
examine the capabilities of artificial agents and behavior of 
humans in different situations, and those interactions can 
be evaluated with regard to the same underlying semantic 
structures, including the parameters of an artificial agent’s 
embodiment and the common ground between interlocutors.

A Diana-like artificial agent, capable of sight, speech, 
and situational understanding (including understanding of 
the user’s situatedness) represents a potential step forward in 
interacting with smart devices; the ability to see and under-
stand the environment, including the user’s gesture, and 
interpret that in conjunction with language, gives rise to the 
potential of truly situated smart artificial agents.

Embodied HCI with physically embodied robotic agents 
opens up the possibility of assistive robotics in situations 
dangerous or inaccessible to humans. The robotic agent can 
navigate the space and potentially interact with it, given 
appropriate effectors, while communicating back to the 
human partner to receive instructions, direction, and rely-
ing on the human’s experience and situational knowledge.

These different interactions can use the same type of 
semantic processing vis-à-vis the common ground. The par-
ticulars of the artificial agent’s embodiment then condition 
what it can do and discuss, and how it in turn introduces 
knowledge into the common ground.

This combination of embodiment and common ground 
in intelligent behaviors lays the groundwork for novel kinds 
of ubiquitous computing a la Weiser ([100]) wherein the 
artificial agent makes the environment an inextricable part 
of its reasoning and communicates that reasoning back to its 
human partner(s) in terms of that same environment.
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